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Abstract 

Background The benefit of physical activity (PA) for increasing longevity is well‑established, however, the impact 
of diurnal timing of PA on mortality remains poorly understood. We aimed to derive circadian PA patterns and investi‑
gate their associations with all‑cause mortality.

Methods We used 24 h PA time series from 96,351 UK Biobank participants aged between 42 and 79 years at accel‑
erometry in 2013–2015. Functional principal component analysis (fPCA) was applied to obtain circadian PA patterns. 
Using multivariable Cox proportional hazard models, we related the loading scores of these fPCs to estimate risk 
of mortality.

Results During 6.9 years of follow‑up, 2,850 deaths occurred. Four distinct fPCs accounted for 96% of the variation 
of the accelerometry data. Using a loading score of zero (i.e., average overall PA during the day) as the reference, 
a fPC1 score of + 2 (high overall PA) was inversely associated with mortality (Hazard ratio, HR = 0.91; 95% CI: 0.84–0.99), 
whereas a score of ‑2 (low overall PA) was associated with higher mortality (1.69; 95% CI: 1.57–1.81; p for non‑linear‑
ity < 0.001). Significant inverse linear associations with mortality were observed for engaging in midday PA instead 
of early and late PA (fPC3) (HR for a 1‑unit increase 0.88; 95% CI: 0.83–0.93). In contrast, midday and nocturnal PA 
instead of early and evening PA (fPC4) were positively associated with mortality (HR for a 1‑unit increase 1.16; 95% CI: 
1.08–1.25).

Conclusion Our results suggest that it is less important during which daytime hours one is active but rather, 
to engage in some level of elevated PA for longevity.
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Introduction
Physical inactivity is a global concern, with 28% of the 
world’s population not attaining physical activity (PA) 
recommendations [1]. Such data are disconcerting 
because of robust evidence on the association of insuffi-
cient PA with increased premature mortality [2, 3].

PA is a complex construct, the valid measurement of 
which is challenging [4]. Most evidence on the PA and 
mortality relation stems from studies using PA self-
report methods. Such methods provide data on PA type, 
dose, and timing but they suffer from PA measurement 
error [2]. Accelerometers are increasingly preferred as 
PA measure [5] because they show high validity [6] and 
quantify temporal nuances in movement behaviors [7]. 
However, raw accelerometry data show considerable 
within and between subject heterogeneity and the data 
volume and complexity are challenging to analyze [8]. 
Thus, most previous studies have relied on summary 
accelerometry output instead of comprehensively exam-
ining movement and rest profiles throughout the day [9].

Functional principal component analysis (fPCA), an 
extension of common PCA, is well-suited to analyze tem-
poral patterns and thus represents a promising technique 
to identify circadian PA patterns. Most previous studies 
using fPCA have been limited by relying on device-spe-
cific summary metrics (‘activity counts’) [10–12] or small 
sample sizes [10, 12, 13]. Few studies have overcome 
these limitations and those that did showed that fPCs 
denoting lower or evening PA were positively associated 
with mortality among older men [14] and that fPCs were 
associated with socio-demographic characteristics and 
self-rated health [9].

In this study we aimed to go beyond what has been 
conducted in previous investigations since it is the first to 
examine fPCA-based PA patterns in relation to all-cause 
mortality in a large cohort of men and women.

Methods
Study population and data collection
The UK Biobank (UKB) is a prospective cohort study 
of > 500,000 UK participants aged 40–69  years when 
recruited between 2006–2010. The study collected data 
on sociodemographic and lifestyle factors, and extensive 
phenotypic information. The assessment visit included 
a touchscreen questionnaire, interviews, physical and 
functional measurements, and the collection of biologic 
samples. The UKB obtained ethics approval from the 
North West Multi-Centre Research Ethics Committee. 
All participants provided written informed consent [15].

Physical activity data
For a subset of 103,669 participants, device-based PA 
data were available, measured in 2013–2015 using the 

Axivity AX3 (Newcastle Upon Tyne, UK) wrist-worn tri-
axial accelerometer for seven days. No participants were 
pre-excluded from the accelerometer study based on 
health problems. Participants with valid email addresses 
were randomly invited to participate in the accelerometer 
study and were informed that the accelerometer was to 
be worn continuously on the dominant wrist immedi-
ately upon receipt. The device was configured to activate 
shortly after its arrival and was deactivated seven days 
later. Subsequently, participants were asked to return 
the device to the coordinating center. Data processing 
was conducted by the UKB expert working group and 
is detailed elsewhere [16]. In brief, the Euclidean norm 
minus one (ENMO) was derived from raw data. ENMOs 
represent a summary metric of bodily acceleration meas-
ured in milligravity units (mg) interpretable as PA volume 
(Online Resource 1). Participants with data from at least 
72 h and data for each one-hour period of the 24-h cycle 
(scattered over multiple days) were included, as recom-
mended by the UKB expert working group (N = 96,665). 
Further, we excluded participants with average daily 
ENMOs above the 99.9 percentile (N = 97) and/or miss-
ing covariates (N = 217), leading to 96,351 participants 
(= PA pattern sample). We used the average hourly 
acceleration over the participant-specific recorded days, 
resulting in a 96,351 × 24 matrix.

Functional principal component analysis
We used fPCA to reduce the dimensionality of the data 
and to derive PA patterns while retaining information on 
between-person variation. fPCA calculates components 
of PA time series data on which each participant scores 
with a certain loading. These fPCs, or eigenfunctions, 
depict the strongest and most important modes of vari-
ability in the PA data [17]. The loading score, or eigen-
value, reflects the extent to which a participant’s activity 
data follows a certain pattern [14]. Each participant con-
tributes to each identified pattern, either positively (posi-
tive loading) or negatively (negative loading). We used 
fPCA through conditional expectation (principal analysis 
by conditional estimation, PACE), developed for sparse 
longitudinal data with only few repeated observations 
per subject [18].

We modeled ENMOs using linear regression, adjusted 
for age, sex, body mass index, and study center to obtain 
PA residuals. These were subsequently standardized 
and subjected to the fPCA. We used a Gaussian kernel 
smoother and the default for estimating the bandwidth 
(5% of the observed time range for the mean function; 
10% for the covariance function). We tested the robust-
ness of our results in sensitivity analyses using gen-
eralized cross-validation for bandwidth selection in 
conjunction with alternative kernel smoothings. The 
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Epanechnikov kernel is (compared to Gaussian) a com-
pact kernel ( |x − x0| ≤ 1 ) that minimizes (among all ker-
nel smoothers) the asymptotic mean integrated squared 
error. The number of relevant components was deter-
mined using the elbow method, an explained total vari-
ability threshold of > 95%, and visual inspection of the 
eigenfunctions [19].

We used the R package fdapace to apply the fPCA [20].

Cohort follow‑up and ascertainment of mortality cases
Participants’ vital status was determined through linkage 
with routine health care data and national death regis-
tries [21]. Follow-up began at the baseline accelerometry 
measurement (June 2013 to December 2015) and ended 
at the date of complete follow-up (September 2021 for 
England/Wales or October 2021 for Scotland) [22], lost-
to-follow-up, or date of death. All-cause mortality was 
considered the endpoint.

Covariates
We identified potential confounding covariables a priori 
based on evidence-derived directed acyclic graphs [23] 
(Online Resource 2). Covariate details are given in Online 
Resource 3. Briefly, the main model was stratified by sex 
and study center and was further adjusted for prevalent 
diabetes and cardiovascular disease (CVD) obtained 
from hospital inpatient records pre-accelerometry, as 
well as baseline (2006–2010) information on smoking 
status, alcohol consumption status, socio-economic sta-
tus, education level, sedentary behavior, and diet.

Statistical analysis
Statistical analysis was conducted with complete data 
after removing missing covariate data (Online Resource 
4). Participants with prevalent malignant cancer other 
than non-melanoma skin cancer (pre-accelerometry; 
cancer registry data) (N = 10,288) were excluded to mini-
mize reverse causation [24]. Ultimately, we included 
84,877 participants in our assessment of all-cause mor-
tality (= mortality sample).

Cox proportional hazards regression with age as the 
underlying time metric [25] was used to estimate hazard 
ratios (HR) and corresponding 95% confidence intervals 
(CI) for associations between PA patterns and mortal-
ity. Non-linearity was accounted for by restricted cubic 
splines with four knots at the 0.05, 0.35, 0.65, and 0.95 
quantiles. Departure from linearity was tested for all vari-
ables by testing the coefficient of the second and third 
spline transformation equal to zero [26]. Proportional 
hazard assumptions were checked using Schoenfeld 
residuals and visually. We conducted several sensitivity 
analyses to evaluate the robustness of our results. Spe-
cifically, we excluded deaths that occurred within two 

years after accelerometry assessment; excluded partici-
pants with prevalent CVD and/or diabetes; performed 
a stratified analysis among participants with prevalent 
CVD and/or diabetes; and used smoking intensity (pack 
years) and alcohol use intensity (grams per day) as covar-
iates [27]. The influence of potential disruptions of the 
circadian rhythm through shift work was investigated 
by adjusting our model for this covariate. We examined 
interactions between fPCs and sedentary behavior and 
age. To investigate the robustness of our derived PA pat-
terns, we tested different fPCA hyperparameters (kernel 
smoother and bandwidths) and correlations with accel-
erometer–derived proportions of sleep, sedentary time, 
and moderate–to–vigorous activity.

Cox regression was conducted using the rms package 
[28]. All data processing and statistical analyses were per-
formed using R 4.2.2 [29].

Results
We obtained PA patterns from 96,351 participants (56.3% 
female). Participants were 61.9 years old at accelerometry 
assessment. The median follow-up time was 6.9  years, 
during which 2,850 participants (3.0%) died (Table  1). 
The average daily ENMO was 28.0 ± 8.1 mg. There was no 
meaningful deviation for those who were excluded due to 
missing covariate data (26.9 ± 8.4  mg). Baseline charac-
teristics for excluded participants did not differ from the 
population for analysis (Online Resource 5).

Physical activity patterns
The fPCA revealed four fPCs that accounted for 95.8% 
of the total variance in the temporal distribution of PA 
during the day (Fig. 1A). No clear elbow was visible and 
further eigenfunctions showed no patterns that provided 
interpretable added value. The first fPC (fPC1) explained 
65.5% of the variability denoting overall PA during the 
day. The second component fPC2 accounted for 17.0% 
of the variance depicting the contrast between early and 
late hours. The third component fPC3 explained 9.0% of 
the variance depicting the contrast of midday and early/
late hours. A similar pattern was found for fPC4 (4.3% 
explained variance), except that fPC4 represented the 
contrast of midday/night and morning/evening hours.

For better interpretability, we focused on participants 
who scored positive (> 1 SD above the mean) or negative 
(< 1 SD below the mean) on a given component (Table 2). 
Positive scores on fPC1 were related to increased PA lev-
els between 6AM–10PM. Positive scores on fPC2 showed 
early PA (8AM–12PM); on fPC3 midday PA (10AM–
4PM); and on fPC4 midday PA (10AM–4PM) and night-
time PA (12AM–4AM) (Fig.  1B). Negative scores were 
related to inverse patterns (Table 2).
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Sensitivity analyses showed that results were robust 
for changes in the parameters used to determine 
fPCs. Alternatively, when an Epanechnikov kernel 
for smoothing was used, the explained variability was 
smaller for fPC1 (~ 16% decrease) but higher for fPC3 
and fPC4, and more than four components were neces-
sary to reach the 95% threshold (Online Resource 6a). 
Nevertheless, the shape of the first four eigenfunctions 
remained similar (Online Resource 6b). Variation in 
the bandwidths of the kernel smoothers did not affect 
the explained variance. Correlations between fPCs and 
accelerometer-derived PA variables were rather weak 
(Online Resource 6c).

Mortality
We noted a strong non-linear relation of fPC1 to mortal-
ity (non-linear term p < 0.001). Negative scores (low over-
all PA) were associated with increased mortality. With 
a loading score of zero as the reference, fPC1 scores of 
-2 and -1 were related to elevated mortality, with HRs 
of 1.69 (95% CI: 1.57–1.81, p < 0.001) and 1.20 (95% CI: 
1.14–1.27, p < 0.001), respectively. Conversely, high over-
all PA was associated with reduced mortality, for scor-
ing + 2 (HR = 0.91; 95% CI: 0.84–0.99, p < 0.001) and + 1 
(0.94; 95% CI: 0.88–0.99, p < 0.001). We found no asso-
ciation between fPC2 (early day versus late day PA) and 
mortality (HR for a 1-unit score increase 0.98; 95% CI: 

Table 1 Descriptive baseline characteristics

The PA pattern sample consists of all participants with valid accelerometry data (those with missing body mass index were excluded). For the mortality sample, we 
excluded subjects with pre-accelerometry cancer and those with missing covariates

Variable PA pattern sample (N = 96,351) Mortality 
sample 
(N = 84,877)

Sex (%)

 Female 54,272 (56.3) 47,081 (55.5)

 Male 42,079 (43.7) 37,796 (44.5)

Age at baseline (sd) 56.16 (7.82) 55.84 (7.83)

Age at accelerometry (sd) 61.86 (7.85) 61.51 (7.86)

Age at exit (sd) 68.67 (7.78) 68.35 (7.79)

Body mass index (sd) 26.72 (4.53) 26.70 (4.51)

Diet score (sd) 3.71 (1.33) 3.70 (1.33)

Socio‑economic status (sd) ‑1.73 (2.82) ‑1.72 (2.82)

Sedentary behavior (sd) 4.29 (2.46) 4.29 (2.47)

Smoking status (%)

 Never 54,872 (57.0) 48,947 (57.7)

 Former 34,574 (35.9) 30,069 (35.4)

 Current 6,660 (6.9) 5,861 (6.9)

Pack years of smoking (sd) 20.25 (16.66) 6.49 (13.24)

Alcohol drinking status (%)

 Never 2,789 (2.9) 2,455 (2.9)

 Former 2,654 (2.8) 2,318 (2.7)

 Current 90,831 (94.3) 80,104 (94.4)

Alcohol intake in grams/day (sd) 16 (17) 16 (17)

Qualifications (%)

 College or university degree 41,407 (43.0) 37,088 (43.7)

 A levels/AS levels or equivalent, NVQ or HND or HNC or equivalent, Other profes-
sional qualifications

22,599 (23.5) 20,101 (23.7)

 O levels/GCSEs or equivalent, CSEs or equivalent 23,419 (24.3) 20,812 (24.5)

 None of the above 7,973 (8.3) 6,876 (8.1)

Diabetes (%)

 No 93,737 (97.3) 82,787 (97.5)

 Yes 2,614 (2.7) 2,090 (2.5)

Cardiovascular disease (%)

 No 91,634 (95.1) 80,920 (95.3)

 Yes 4,717 (4.9) 3,957 (4.7)
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0.94–1.03, p = 0.395). fPC3 (midday versus early and late 
day PA) was linearly associated with decreased mortal-
ity – for a 1-unit score increase, the HR was 0.88 (95% 
CI: 0.83–0.93, p < 0.001). An association in the opposite 
direction was apparent for fPC4, i.e., midday and night-
time PA versus early and evening PA (HR for a 1-unit 
score increase 1.16; 95% CI: 1.08–1.25, p = 0.001). Fig-
ure 2A displays the HRs for specific fPC loading scores in 
relation to the reference score zero. Figure 2B shows the 
(non-)linear relation of the component scores to all-cause 
mortality.

In addition, in a sensitivity model we examined the 
impact of smoking intensity (pack years) and alco-
hol intensity (grams per day) and found no deviation 

from our main results (Table  3). The associations also 
remained apparent when using another kernel smoother, 
with non-significant estimates for fPC4 (Online Resource 
6d). Further, we excluded deaths within two years after 
accelerometry (N = 340) and the results were materially 
unaltered. Neither did the exclusion of participants with 
prevalent CVD and/or diabetes (5,618 exclusions) impact 
the results, nor restricting the analysis to participants 
with these comorbidities (N = 5,618) (Online Resource 
7). Also, accounting for shift work did not alter the main 
results (N = 53,519) (Online Resource 8). Lastly, we 
examined interactions between fPC scores and sedentary 
behavior and age and none of the interaction terms were 
statistically significant (Online Resource 9).
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Fig. 1 a The first four eigenfunctions b The average daily time course of PA. The solid grey line represents the population PA average (ENMOs 
in mg), the dashed line represents the positive scorers (at least one standard deviation away from the mean score), and the dotted line represents 
the negative scorers (at least one standard deviation away). Daily average ENMOs were similar for positive and negative scores on fPC2, fPC3, 
and fPC4 as well as between these fPCs

Table 2 Description of PA patterns

fPC Score Abbreviation Description Time period

Participants showed… Approximately

fPC1 positive fPC1 + higher overall PA 06AM – 10PM

fPC1 negative fPC1– lower overall PA 06AM – 10PM

fPC2 positive fPC2 + higher early day PA 08AM – 12PM

fPC2 negative fPC2– higher late day PA 06PM – 12AM

fPC3 positive fPC3 + higher midday PA 10AM – 04PM

fPC3 negative fPC3– higher early day and late day PA 08AM – 12PM and 06PM – 12AM

fPC4 positive fPC4 + higher midday and nighttime PA 10AM – 04PM and 12AM – 04AM

fPC4 negative fPC4– higher early day and evening PA 08AM – 12PM and 04PM – 08PM
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Discussion
We derived novel circadian PA patterns using fPCA and 
uncovered four eigenfunctions that explained almost 
the entire variability of 24  h-accelerometry data in the 
UK Biobank. These patterns described the time course 
of activity throughout the day and differences between 
morning and evening hours. We found that three fPCs 
were associated with mortality. Positive fPC1 scores rep-
resenting high overall PA were associated with decreased 
mortality, whereas negative fPC1 scores reflecting low 

overall PA displayed higher mortality. Negative scores 
on fPC3, signifying the combination of early day and late 
day PA were related to increased mortality, whereas posi-
tive fPC3 scores representing midday PA were associated 
with lower mortality. Moreover, positive fPC4 scores cap-
turing midday and nighttime PA were associated with 
higher mortality, whereas negative fPC4 scores symbol-
izing the combination of early day and evening time PA 
were related to lower mortality. By comparison, fPC2 was 
unrelated to mortality.

Our results point towards the importance of overall PA 
for longevity. Inadequate levels of PA increase the risk of 
premature mortality, whereas high PA levels are associ-
ated with lower risk of early death [30, 31]. Our findings 
regarding fPC1 support this evidence. Specifically, lower 
fPC1 scores were associated with greater mortality haz-
ard, and scoring highly positive on fPC1 was associated 
with lower premature mortality. The inverse relation of 
fPC1 to mortality was attenuated above a score of + 2, 
which mirrors the World Health Organization guidelines 
on PA and sedentary behavior stating that the beneficial 
effects of PA diminish at higher levels [32].

The timing of PA has been discussed in terms of the 
biological response to exercise, e.g., decreased blood 
glucose levels and activated metabolic pathways for PA 
at certain hours [33, 34]. Nevertheless, there is no con-
sistent evidence that diurnal timing of PA matters for 
health [35]. This might be explained by the challenging 
harmonization between studies along with the neglect 
of nighttime PA, highlighting the importance of ana-
lyzing device-based assessed patterns. Our patterns 
revealed insights into the temporal distribution of activ-
ity that go beyond the general time course of PA. Positive 
fPC3 scores (fPC3 + ; one peak at midday) and negative 
fPC4 scores (fPC4–; two peaks, morning and evening) 

Fig. 2 a HRs are reported for a one score increase except for fPC1, where HRs for a score of ‑2, ‑1, + 1, and + 2 compared to 0 are reported b 
(Non‑)linear relation of continuous fPC scores and hazard ratios

Table 3 Hazard ratios of the four principal components for all‑
cause mortality

HRs are reported for a one score increase except for fPC1, where HRs for a 
score of -2, -1, + 1, and + 2 compared to 0 are reported. The main model was 
stratified by sex and study center and was further adjusted for prevalent CVD 
and diabetes, smoking status, alcohol consumption status, socio-economic 
status, education level, sedentary behavior, and diet. The sensitivity model 
was adjusted for pack years of smoking and alcohol grams per day instead of 
smoking status and alcohol consumption status

Component Main model 
(N = 84,877) HR (95% 
CI)

Sensitivity model 
(N = 62,771) HR (95% 
CI)

fPC1

 ‑2:0 1.69 (1.57–1.81) 1.77 (1.63–1.93)

 ‑1:0 1.20 (1.14–1.27) 1.22 (1.14–1.30)

 1:0 0.94 (0.88–0.99) 0.94 (0.87–1.00)

 2:0 0.91 (0.84–0.99) 0.92 (0.84–1.02)

 Overall p‑value 6.25 ×  10–56 3.43 ×  10–50

fPC2 0.98 (0.94–1.03) 0.98 (0.93–1.04)

 Overall p‑value 0.395 0.554

fPC3 0.88 (0.83–0.93) 0.89 (0.83–0.95)

 Overall p‑value 2.02 ×  10–6 3.43 ×  10–7

fPC4 1.16 (1.08–1.25) 1.15 (1.05–1.26)

 Overall p‑value 1.08 ×  10–5 0.003
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showed above-average activity levels and were related to 
decreased mortality. These results suggest that it is not 
the shape of the temporal distribution of PA that mat-
ters if a certain minimum level of (above-average) PA is 
achieved. Surprisingly, our results for fPC3– suggest that 
early and late day PA are associated with increased mor-
tality, which somewhat contradicts the results for fPC4–. 
Possibly, higher PA during typical sleeping hours (e.g., 
11PM-06AM) contributes to higher mortality (as also 
shown by fPC4 +). However, these associations may be 
confounded by occupation [36], lifestyle factors [37], or 
genetics [38]. Furthermore, subclinical disease may cause 
sleep disruption and slightly increased activity levels at 
night, suggesting potential reverse causation. However, 
the exclusion of deaths within the first two years after 
the PA assessment did not impact these results. Of note, 
a study published in 2022 clustered UKB accelerometer 
data and found that nighttime activity was associated 
with increased CVD incidence compared to morning 
PA [39]. In another study, published in 2023, the authors 
reported decreased mortality for midday–afternoon PA 
compared to morning PA, which our findings support 
(fPC3 +); however, in their study, evening PA (5PM–
12AM) was not associated with mortality [40].

We present novel analyses of PA data using the residu-
als of raw accelerometry-based PA metrics. Neverthe-
less, the shapes of our PA patterns are similar to previous 
applications of fPCA to accelerometry data [9–11, 13, 
14], which provides confidence in the robustness of our 
results. One study derived four patterns (88% variance 
explained) among 2,976 men and found that the first 
component denoted overall activity, with lower quar-
tiles showing higher mortality hazards [14]. Another 
study derived four fPCs (87% variance explained) and 
reported associations with population characteristics 
and self-reported health among 7,657 individuals [9]. We 
greatly expand on these findings by presenting four fPCs 
explaining 96% of the variability of the data on 96,361 
participants. Moreover, we used ENMOs and thus over-
came the limitations of summary counts. We also used 
different kernel smoothers and bandwidths in sensitivity 
analyses to provide more robust results. Finally, we did 
not use the accelerometer data directly as input for the 
fPCA, but instead used the residuals, which were a priori 
adjusted for potential major confounders.

Strengths and limitations
Our study has some limitations. First, at least two years 
elapsed between measurement of covariates at base-
line and accelerometer measurement. During this time, 
covariates might have changed. However, registry data 
on prevalent cancer as well as hospital inpatient data on 
CVD and diabetes were available until the accelerometry 

measurement. Additionally, it is possible that partici-
pants altered their behavior because they were aware of 
wearing an accelerometer (‘reactivity’) [41]. Differential 
misclassification of the exposure could lead to biased 
associations with the outcome. Ultimately, the general 
limitations of accelerometry remain, including lack of 
data on context, which limits the interpretation and 
comparability of our results with context-based meas-
urements. Having averaged participants’ PA over several 
days, we may have missed single intense PA bouts that 
could indeed be of particular value for health.

Notwithstanding these limitations, we were able to gain 
novel insights. The valuable information of the temporal 
distribution of PA is underutilized, with only few studies 
examining PA patterns [42]. We addressed this knowl-
edge gap by conducting a robust study of PA patterns 
based on a large sample and associations with mortality. 
By using an unsupervised approach, we made no a priori 
assumptions. Our patterns were robust to different fPCA 
settings (smoothing kernel, varying bandwidths) and 
covariate modelling. Compared with previous research, 
we examined a significantly larger sample as well as a 
longer time period, and hence, presented stable effect 
estimates with smaller CIs. While previous accelerometer 
studies were based on summary statistics, we used a met-
ric derived from raw data, which facilitates comparability 
and interpretability.

Conclusion
Our study addressed a gap in previous literature regard-
ing the temporal course of PA and its association with 
mortality. We found novel circadian patterns of PA using 
fPCA. These patterns were defined as the time course 
of PA over 24  h. Four eigenfunctions explained most of 
the variation in the data and the patterns were related 
to all-cause mortality. Our results indicate that it is less 
important during which daytime hours one is active but 
rather, that engaging in a minimum level of PA is asso-
ciated with decreased mortality. Future studies need to 
confirm the validity and robustness of our methods and 
results. Finally, contextual information such as activity 
type would be of additional value.
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