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Abstract 

Background Sedentary behavior (SB) is a recognized risk factor for many chronic diseases. ActiGraph and activPAL 
are two commonly used wearable accelerometers in SB research. The former measures body movement and the lat‑
ter measures body posture. The goal of the current study is to quantify the pattern and variation of movement (by 
ActiGraph activity counts) during activPAL‑identified sitting events, and examine associations between patterns 
and health‑related outcomes, such as systolic and diastolic blood pressure (SBP and DBP).

Methods The current study included 314 overweight postmenopausal women, who were instructed to wear 
an activPAL (at thigh) and ActiGraph (at waist) simultaneously for 24 hours a day for a week under free‑living condi‑
tions. ActiGraph and activPAL data were processed to obtain minute‑level time‑series outputs. Multilevel functional 
principal component analysis (MFPCA) was applied to minute‑level ActiGraph activity counts within activPAL‑identi‑
fied sitting bouts to investigate variation in movement while sitting across subjects and days. The multilevel approach 
accounted for the nesting of days within subjects.

Results At least 90% of the overall variation of activity counts was explained by two subject‑level principal compo‑
nents (PC) and six day‑level PCs, hence dramatically reducing the dimensions from the original minute‑level scale. The 
first subject‑level PC captured patterns of fluctuation in movement during sitting, whereas the second subject‑level 
PC delineated variation in movement during different lengths of sitting bouts: shorter (< 30 minutes), medium (30 ‑39 
minutes) or longer (> 39 minute). The first subject‑level PC scores showed positive association with DBP (standard‑
ized β̂ : 2.041, standard error: 0.607, adjusted p = 0.007), which implied that lower activity counts (during sitting) were 
associated with higher DBP.

Conclusion In this work we implemented MFPCA to identify variation in movement patterns during sitting bouts, 
and showed that these patterns were associated with cardiovascular health. Unlike existing methods, MFPCA does 
not require pre‑specified cut‑points to define activity intensity, and thus offers a novel powerful statistical tool to elu‑
cidate variation in SB patterns and health.
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Background
Studies across the spectrum of public health and bio-
medical research have linked sedentary behavior 
(SB) to poor health [1–3]. Interventions and strate-
gies have been developed to reduce SB in an effort to 
improve health benefits within the population [1, 4, 5]. 
To measure SB reliably, accurately and cost-effectively, 
it is well established that sensor based accelerometers 
are the method of choice [6–8]. However, there are a 
plethora of such devices that are each used individu-
ally to measure SB. SB is defined as energy expendi-
ture ≤ 1.5 metabolic equivalents (low movement) and 
a seated, reclined, or lying position (posture) during 
waking hours [9, 10]. Devices used to measure SB differ 
in the information that they capture (e.g., posture ver-
sus energy expenditure), and hence are not always con-
cordant. Combining SB measures across devices could 
lead to more accurate SB assessment and also provide 
additional insights into SB patterns. The latter is the 
focus of this work.

We briefly review two popular devices for SB meas-
urement in health behavior studies. ActiGraph GT3X+ 
(ActiGraph LCC, Pensacola, FL, USA) is a commonly 
used hip- or wrist-worn research-grade wearable 
accelerometer to measure movement based on accel-
eration across vertical, horizontal, and perpendicular 
axes [6, 11]. These accelerations are usually sampled at 
fine granularity (e.g., 10Hz, or 30Hz) which provides 
a rich and objective data resource to assess move-
ment patterns . Both vertical axis and triaxial counts 
from activity accelerometers can provide biologically 
meaningful data for assessing movement intensity, and 
hence energy expenditure [12, 13]. Calibration methods 
based on energy expenditure at different acceleration 
counts are then used to classify the movement as physi-
cally active versus sedentary. However, the ActiGraph 
does not provide information on body posture. On the 
other hand, the thigh-worn activPAL (PAL Technolo-
gies, Glasgow, UK) is a frequently used accelerometer 
to measure body posture [14, 15], classifying behavior 
as sitting (i.e. all non-upright postures), standing and 
stepping. Thus, measurements from either of these 
devices alone, often, do not provide consistent informa-
tion about SB, and could result in a loss of information 
regarding SB patterns.

Exploiting the variety of data available in SB sensors, 
the goal of our current study is to implement Functional 
Principal Components Analysis (FPCA) to quantify 
the pattern and variation of movement (by ActiGraph 

accelerations) during activPAL-identified sitting events. 
Our unique approach uses the time-matched Actigraph 
and activPAL continuous datastreams, to extract sit-
ting posture events and then applies FPCA to minute-
level triaxial activity counts within sitting time. As a 
comparison, we also calculated the Posture and Physi-
cal Activity Index (POPAI) [6], which was proposed to 
classify each minute of activPAL sitting or standing as 
inactive or active by using a cut-point of vertical axis 
(VA) activity counts from ActiGraph. A salient advan-
tage of FPCA, as we will demonstrate in this work, 
is that it utilizes the entire time series data, does not 
require pre-defined cut-points, captures the principal 
directions of variation, and achieves dimension reduc-
tion [16, 17]. While FPCA methods have been used 
successfully in physical activity research [17–19], to our 
knowledge they have not been extensively applied in SB 
research, especially in the context of jointly examining 
movement and posture.

As a proof of concept of the potential applications of 
FPCA to reveal novel insights between SB and health, we 
examine associations between FPCA-derived patterns 
and health-related outcomes, such as blood pressure. 
Studies have shown a positive relationship between pro-
longed sitting and blood pressure [20–23]; however, less 
is known about patterns of movement during sitting, and 
if/how these might impact health. As a complementary 
analysis, we also applied POPAI and compared health-
related associations between methods.

Method
Study sample
Rise for Health (ClinicalTrials.gov: NCT03473145) [24] 
was one of the projects within the National Institute 
of Aging Program Grant “Sedentary Time and Aging 
Research (STAR)” at University of California San Diego 
aiming to provide more rigorous and comprehensive evi-
dence on how to interrupt sitting time to improve health 
among overweight postmenopausal women. Overweight 
older women, spend the majority of their waking hours 
sitting, which increases their risk of chronic diseases. 
Engaging in moderate-to-vigorous physical activity can 
be challenging for this group. Therefore, the Rise for 
Health study was designed to understand the health ben-
efits of decreasing sedentary behavior in this group. The 
primary aim of this 3-arm randomized controlled trial 
was to investigate how 3-month changes in sitting time 
or changes in brief sit-to-stand transitions would impact 
biomarkers of healthy aging, and physical, emotional, and 
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cognitive functioning compared to an attention control 
condition.

For the current analyses, we used baseline (pre-rand-
omization) data from 327 (recruited during 2018-2021) 
Rise for Health participants. Details on eligibility and 
study protocols have been previously published [24]. Per-
tinent to the current analysis, Rise for Health participants 
were instructed to wear an activPAL (at thigh) and Acti-
Graph GT3X+ (at waist) simultaneously for 24 hours a 
day for 7 days under free-living conditions and to track 
their daily sleeping time on a paper log.

Device data processing
Event files from the activPAL were extracted using the 
VANE classification algorithm (PALanalysis, v8), which 
uses the thigh location of the device to identify sitting, 
standing, and stepping events. Daily waking wear time 
was identified as the complement of the sleeping time 
from the paper log. Waking wear sitting bouts (i.e., inter-
vals with uninterrupted sitting) were determined by 
matching the timestamp of sitting activity from activPAL 
event file with the participant’s daily waking wear time.

The 1-second count file of ActiGraph GT3X+ with 
low-frequency-extension (LFE) filtering was generated 
with ActiLife software [25]. LFE option increases sensi-
tivity to very low amplitude activities, such as slow walk-
ing, which might occur in elderly populations and our 
study sample [6, 26]. Non-wear time from the 1-second 
count file could be identified by the Choi algorithm [27] 
based on consecutive zero counts. Although most of the 
non-wear time detected by the Choi algorithm would 
overlap with participants’ sleeping time, the Choi algo-
rithm could capture additional non-wear time during a 
participant’s waking wear time. Hence, the concurrent 
waking wear sitting bouts started with time-matching 
event file (activPAL) and count file (ActiGraph) and 
excluded not only the sleeping-time based on the sleep-
ing log, but also any additional non-wear time detected 
by the Choi algorithm. The 1-second-level activity counts 
from vertical, horizontal, and perpendicular axes (VA, 
HA and PPA) were then summed up over each minute, 
respectively; the minute-level triaxial vector magnitude 
(VM) was computed as VA

2 +HA
2 + PPA

2 [25, 28]. 
For bout lengths that were not a multiple of a minute, the 
following rule was applied: if the final fraction of the bout 
was less than 30 seconds, that final fraction was removed; 
otherwise, say 40 seconds was the last fraction, activity 
counts were calculated at 40-second level and then mul-
tiplied by 60/40 to approximate the last minute counts of 
the sitting bout. Thirteen out of 327 participants had no 
concurrent waking wear data. To simplify the descrip-
tion, the term “concurrent waking wear sitting bouts” and 
“concurrent waking wear sitting time” were abbreviated 

as “sitting bouts” and “sitting time”, respectively, through-
out the rest of the paper, unless otherwise specified.

Previous population-based studies have suggested 
that daily waking sitting time in adults typically ranged 
between 5 and 8 hours with self-reported measures and 
were higher with device measures, 7.7 to 11.5 hours [29]. 
Among those age > 80 years, the daily sitting time could 
be more than 13 - 14 hours [30, 31]. Hence, valid days 
were defined as concurrent waking wearing days of both 
devices, and days with total daily sitting time between 
5 to 15 hours; about 5% of the participant-days were 
excluded. The minimum required number of valid day(s) 
per participant in the analyses was one. Furthermore, 
only sitting bouts ≤ 1 hour within valid days, defined as 
valid sitting bouts, were utilized for analyses; 5% of the 
sitting bouts were then eliminated. The first reason that 1 
hour was chosen as the upper limit was because the 95th 
percentile of the sitting bouts was 61 minutes. The sec-
ond reason was for model fit feasibility which is described 
in more detail in the statistical analysis “Multilevel func-
tional principal component analysis (MFPCA)”  section. 
The final sample size was 314 and final valid participant-
days was 1776. On these valid participant-days, the daily 
standing and stepping time were obtained based on the 
activPAL event status as well as participants’ daily wak-
ing wear time. The average daily non-sitting time was the 
mean of the total daily standing and stepping time over 
the valid wearing days per participant.

Posture and Physical Activity Index (POPAI)
The POPAI-based inactive and active sitting time were 
calculated per sitting bout first, i.e., for each minute 
within a sitting bout if VA counts < 75 cpm (counts per 
minute), the minute was classified as inactive sitting, and 
as active sitting otherwise [6]. Average daily inactive and 
active sitting time were calculated as each participant’s 
sum of inactive sitting time or active sitting time, respec-
tively, across all valid sitting bouts, divided by their total 
number of valid wear days.

Health outcome and baseline characteristics
Blood pressure (BP), including systolic and diastolic 
(SBP and DBP), were the health outcomes of interest in 
the current study. They were measured at least 3 times at 
the participant’s pre-randomization clinic visit by trained 
study staff using a digital BP monitor (such as Dinamap 
or Accutor 7 or Dinamap V100). Participants were seated 
and at rest for at least 5 minutes prior to testing. Partic-
ipants had their feet planted on the floor and arm on a 
table with their palm up during each of the blood pres-
sure tests. The readings were taken at intervals of at least 
1 minute apart. A fourth measurement was taken if two 
of three readings were more than 5 mmHg apart for each 
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SBP and DBP. The mean value of all available measures 
was taken for SBP and DBP, respectively. Other base-
line characteristics included in the analyses were age, 
race (white versus non-white), education (college and 
above versus below), employment status (work versus 
not working), body mass index (BMI) and hypertension 
status (yes/no). These characteristics were self-reported, 
except for BMI (weight and height were measured by 
study staff).

Statistical analysis
Multilevel functional principal component analysis (MFPCA)
Our accelerometer-based activity data was not only 
high dimensional and irregularly-spaced, but also meas-
ured on multiple days per participant at baseline, which 
demanded a multilevel model to differentiate variations 
due to the hierarchical structure: participant-specific 
variation (level 1, between-subject) and day-specific vari-
ation (level 2, within-subject).

The time of day when a sitting bout of a particular 
length occurs will vary across participants, making 
it difficult to compare patterns if bouts are based on 
clock-time. Hence, we first ordered sitting bouts per 
participant per day by unique length from 1 minute to 
60 minutes with an increment of 1 minute. We then 
implemented MFPCA to VM counts/minute within 
(ordered) sitting bouts; if a participant had multiple 
bouts with the same length in a day, the VM counts/
minute were averaged, and if a participant did not 
have a certain bout length in a day, the empty bout was 
retained with each minute of VM counts marked as 
“missing”. This configuration placed all participants and 

all days under the same scale in terms of sitting bouts 
and their VM counts, and thus allowed us to compare 
counts within bouts of identical length across days and 
participants.

Figure  1 illustrated an example of one partici-
pant’s profile for one day of VM counts/minute within 
ordered sitting bouts. Vertical grey lines indicated sit-
ting bouts from length 1 minute to 60 minutes labeled 
by the top horizontal axis. As the bout length increases, 
so does the gap between the lines. This axis was impor-
tant as it corresponds to ordered sitting bout lengths, 
and thus could be meaningfully interpreted. The corre-
sponding horizontal axis at the bottom was the cumula-
tive sum of the top bout lengths, and was necessary for 
the mathematical formulation of the FPCA model. Each 
unit of the bottom axis was aligned with a value of VM 
counts/minute or a missing value, which served as con-
tinuous variable t in the MFPCA formulation (see Eq. 1 
for details). Black dots represent VM counts/minute 
within sitting bouts. Empty bouts, bouts without VM 
counts, for this participant on this day could be non-
empty and have VM counts for other participants and/
or on other days. This was another reason that maxi-
mum sitting bout length was set at 60 minutes, namely, 
to prevent excessive numbers of empty sitting bouts at 
the right tail.

To account for the hierarchical nature of these data 
(multiple days per participant), we adopted the MFPCA 
approach [16], which was designed to decompose the 
total variation into between- and within-subject levels 
and extract major modes of variation at both levels. The 
full model of MFPCA [16] was formulated as

Fig. 1 Example of one participant’s profile for one day of VM counts/minute within ordered sitting bouts. Vertical grey lines indicated all 
possible sitting bout lengths from 1 minute to 60 minutes. The corresponding horizontal axis at bottom was the cumulative sum of the top bout 
lengths and the maximum value of the bottom axis was 

∑60
b=1 b = 1830 minutes, which implied t ∈ [1, 1830] with increment of 1 minute. t = 

1 at the bottom was mapping to 1‑minute sitting bout at the top; t = 2 and 3 at bottom were mapping to the first minute and second minute 
of the 2‑minute sitting bout at the top; t = 4 to 6 at the bottom would be the 3‑minute bout at the top, etc. If the top bout length was 8 minutes, 
the corresponding bottom values would span from 

∑7
b=1 b = 28 to 

∑8
b=1 b = 36 ; if the top bout length was 60 minutes, the bottom values would 

span from 
∑59

b=1 b = 1770 to 1830. Each minute of the bottom axis held a VM count value or a missing value. Black dots represent VM counts/
minute within sitting bouts
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where Xij(t) was the VM counts function measured over t 
(the bottom indexes in Fig. 1) for day j within participant 
i ( i = 1, 2, ..., n, j = 1, 2, ..., di where n was the total num-
ber of participants, di indicated number of valid days for 
participant i); µ(t) was the overall mean count function; 
ηj(t) was a day-specific shift from overall mean, and ǫij(t) 
was an error term assumed to have a normal distribu-
tion N (0, σ 2) . φ(1)

k (t) and φ(2)

l (t) were the eigenfunctions 
at level 1 ( kth component) and level 2 ( lth component); ξik 
and ζijl were principal component (PC) scores at level 1 
and 2, assumed to have normal distributions

where �(1)k  and �(2)l  were the eigenvalues at level 1 ( kth 
component) and 2 ( lth component). Intuitively, each 
eigenfunction could be conceptualized as identifying 
a specific pattern of activity counts (over sitting bouts), 
while each subject’s corresponding PC score indicates to 
what extent that subject subscribes to this pattern with 
the eigenvalue quantifying the variance of the PC score. 
The PC scores were essential quantities in our analyses 
because they captured the signals of sitting patterns. N1 
and N2 were the number of components retained at level 
1 and level 2. The choice of N1 and N2 is usually based on 
a balanced selection between ensuring that enough vari-
ation in the data is explained, while also avoiding noise. 
This is a trade-off between under-fitting and over-fitting: 
retaining sufficient amount of the information from the 
data while reducing the chance of identifying spurious 
patterns. In our application, we required that the total 
variation explained by the number of components was 
90% as in [16]. MFPCA was implemented using R pack-
age refund (version 0.1-26) [32].

Multiple linear regression (MLR)
We fit multiple linear regression models to investigate 
associations between movement patterns during sitting 
(i.e., the PC scores from the MFPCA) and blood pres-
sure. Since blood pressure was not measured on multiple 
days during baseline, only the participant-level (level 1) 
PC scores were applied to the regression modeling focus-
ing on subject-level effects on the outcome [17, 33]. The 
association between PC scores and blood pressure were 
examined in MLR controlling for participants’ base-
line characteristics, as well as, two additional covariates: 

(1)

Xij(t) = µ(t)+ ηj(t)+

N1
∑

k=1

ξikφ
(1)

k (t)

+

N2
∑

l=1

ζijlφ
(2)

l (t)+ ǫij(t)

ξik ∼ N (0, �
(1)

k ), ζijl ∼ N
(

0, �
(2)

l

)

number of days with valid concurrent device wear and 
average daily non-sitting time.

Similarly, the association between POPAI-based sitting 
time (classified as active: vs inactive) with blood pressure 
were also assessed in MLR replacing PC scores with aver-
age daily inactive sitting time and average daily active sit-
ting time in the model.

To better understand and compare the magnitude of 
the associations, PC scores and POPAI-based variables 
were standardized, and the MLRs were refit, respectively. 
Although the re-estimated coefficients would be dif-
ferent for these standardized variables, p values will be 
unaffected.

The overall α level of multiple comparisons at 0.05 was 
controlled by Benjamini and Hochberg false discovery 
rate (BH FDR) [34]. Both original p values and BH FDR 
adjusted p values (p-FDR) were presented. Implement-
ing such correction improved the rigor of the approach. 
Model fit of MLRs were evaluated via residual and lever-
age plots.

Assessing goodness of fit
To provide an empirical evaluation of the MFPCA model,  
we superimposed and graphed observed data and fit-
ted curves. The observed VM counts/minute within sit-
ting bouts were plotted on a participant-day, then we 
added one element at a time for fitted curves based on  
model Eq.  1 as follows: 1. the overall mean, µ(t) ; 2. mean  
day shift, µ(t)+ ηj(t) ; 3. the participant level fitted curve, 
 µ(t)+ ηj(t)+

∑N1

k=1
ξikφ

(1)

k (t) ; 4. the participant-day level 
fitted curve, µ(t)+ ηj(t)+

∑N1

k=1
ξikφ

(1)

k (t)+
∑N2

l=1
ζijlφ

(2)

l (t).

Assessing impact of missing data in MFPCA
We used a (pseudo-) simulation approach to evaluate the 
robustness of our approach to missing data, i.e., absence of a 
sitting bout of a particular length, which was relatively com-
mon in our dataset, especially for longer bouts. To describe 
the extent of missingness, we introduce some notation. Let 
b = 1, 2, . . . , 60 denote the index (and the length) of the sit-
ting bouts and mb the number of participant-days that did 
not register a b-minute bout. For instance, m1 = 14 and m60 
= 1655 in our data implied unregistered rate (with denomi-
nator 1776) were 0.8% and 93%, respectively; the average 
unregistered rate across all 60 indexes was 71%. The over-
all missing rate of VM counts/minute from the 1776 × 1830 
data matrix was 

∑60
b=1(mb × b)

1776×1830
= 83% , i.e. there were a consid-

erable number of missing data across participant-days. 
Although MFPCA can accommodate data missing at ran-
dom, simulations were carried out to evaluate the impact of 
large amount of missingness in constructing PCs, especially 
PC1 at level 1 since this component accounted for a major-
ity of the variability at subject level. Details were described 
in the Supplementary materials (A.2).
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All analyses were performed in the R statistical pro-
gramming language (4.2.3) [35].

Results
Sample characteristics
The total number of participants included in the analy-
ses was 314; the number of days with valid concurrent 
wear of both devices for each subject varied from 1 day 
to 9 days with average 5.7 days (median: 6 days); num-
ber of weekdays per participant ranged from 1 to 7 with 
average 3.8 (median: 4); number of weekend days ranged 
from 1 to 4 with average 1.9 (median: 2). The total num-
ber of participant-days was 1776, 579 were from week-
ends and 1197 were from weekdays, giving a 2.4:5 ratio 
of weekend:weekdays. Figure  2 showed the histogram 
of sitting bouts from 1 minute to 60 minutes among all 
participant-days. For example, as mentioned in “Assess-
ing impact of missing data in MFPCA”  section, among 
1776 participant-days, 1762 had 1-minute sitting bout 
(the remaining 14 participant-days did not register 1 
minute bouts), and 121 had 60-minute sitting bout 
(the remaining 1655 participant-days did not). The 2.5 

percentile and 97.5 percentile of the sitting VM/minute 
were 0 and 1021, with median 20 and mean 141 among 
all participant-days.

The descriptive statistics of blood pressure, daily activ-
ity time and other baseline characteristics are presented 
in Table  1. The average age of the participants was 68 
years and their average BMI was 32.3. The mean SBP and 
DBP were 127.2 mmHg and 75.6 mmHg, respectively. 
The vast majority of participants were white (92.2%) and 
slightly over half of the participants (52.3%) reported 
having a hypertension diagnosis at baseline. Average 
daily inactive sitting and active sitting time based on 
POPAI were 307.7 minutes and 94.6 minutes, respec-
tively; hence, 23.4% of the sitting time was active sitting 
in this sample. Average daily non-sitting time (including 
standing and stepping time) was 262.6 minutes.

Multilevel functional principal components
Two components at participant-level (level 1, N1=2) and 
six components at day-level (level 2, N2=6) explained at 
least 90% of the total variance, in which 29% was attrib-
uted to level 1 and 71% was to level 2.

Fig. 2 Histogram of sitting bouts from 1 minute to 60 minutes among all participant‑days (1776)
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Participant‑level (level 1) principal components
Figure  3a and  b showed the 2 PC eigenfunctions at the 
participant-level, φ(1)

1
 and φ(1)

2
 , as well as the proportions 

of the variability accounted by the 2 PCs at this level (75% 
and 25%). φ(1)

1
 was negative across the entire x-axis. This 

indicated that participants with larger PC scores tended 
to have lower VM counts/minute than the overall mean, 
hence, less acceleration or movement. φ(1)

2
 showed both 

positive and negative values: positive when bout length 
was short (less than 30 minutes) and became negative at 
medium bout length (around 30 - 39 minutes), then posi-
tive at longer bouts (> 39 minutes - 60 minutes). Inter-
estingly, the most negative valley of φ(1)

1
 and φ(1)

2
 curves 

appeared at the same area, around sitting bout length 34 
minutes, suggesting the sitting bout at that length could 
be important for capturing between-subject variability. 
Figure  3c and  d illustrated the overall mean function, 
µ(t) (red), with addition (blue) or subtraction (green) 
of square root of eigenvalues multiplying correspond-
ing eigenfunctions, e.g., µ(t)±

√

�
(1)
1
φ
(1)
1

(t) (left) and 
µ(t)±

√

�
(1)
2
φ
(1)
2

(t) (right), which could be interpreted as 
the weighted deviation away from the overall mean cap-
tured by the 2 PCs. The predicted mean function curve 
of VM counts decreased rapidly during short bouts and 
then stayed relatively stable afterwards. Aligned with 
Fig. 3a and b both components showed the largest vari-
ance of VM counts at a sitting bout length of 34 minutes.

Day‑level (level 2) principal components
The 6 day-level (level 2) PCs represented random day-
level functional shift from the participant level curve. The 
eigenfunctions exhibited oscillatory pattern and captured 
day to day variation in movement during sitting bouts. A 
detailed description and figures are shown in the Supple-
mentary materials (A.1).

Model fit of MFPCA
Figure 4 showed illustrative examples of two participant-
days: (a) was the same participant-day from Fig. 1 where 
a majority of activity counts were below 1000 cpm with a 
large number of counts around 0; (b) was a different par-
ticipant on a different day where a large number of activ-
ity counts were above 1000 cpm and fewer were around 
0. The figures showed the contributions of principal 
components from both levels in terms of capturing the 
activity patterns, and demonstrated that the fitted curve 
incorporating both participant and day-level components 
tracks the observed data well.

As for impact of missing data in MFPCA, comparison 
from simulated complete data and incomplete data sug-
gested that level 1 PC1 from incomplete data still cap-
tured sufficient variability at subject level despite the 
large amount of missingness. More details were shown in 
the Supplementary materials (A.2) and Table A1.

Regression association
Two sets of MLR were conducted; while the focus was 
on the first set assessing the associations between level 
1 principal component scores (PC1, PC2) and blood 
pressure, the second set examined the associations of 
POPAI based metrics – average daily inactive sitting 
time and active sitting time – with blood pressures 
(Pearson correlation between average daily inactive sit-
ting time and active sitting time was 0.01). Both sets 
of models were adjusting for covariates: age, race (ref: 
non-white), education (ref: below college), employment 
status (ref: not working), BMI, reported hyperten-
sion status (ref: no), as well as number of concurrent 
wear days of devices and average daily non-sitting time 
(Table  2). Diagnostic plots displayed neither nota-
ble violations of modeling assumptions nor influential 

Table 1 Descriptive statistics of sample characteristics

a Standard deviation (SD)
b Binary variables: Race (white versus non-white), Education (college and above versus below), Employment status (work versus not working), Hypertension status 
(yes/no)
c Among 314 participants, % was based on the non-missing corresponding variables at baseline, hypertension status had 10 missing values while all others had 6

Mean  (SDa) Count (%c)

SBP (mmHg) 127.2 (16.0) Race (white)b 284 (92.2)

DBP (mmHg) 75.6 (10.5) Education (college and above) 222 (72.1)

Age (years) 68.2 (7.3) Employment (working) 123 (39.9)

BMI 32.3 (4.9) Hypertension (yes) 159 (52.3)

Average daily time (minute)

   inactive sitting 307.7 (78.7)

   active sitting 94.6 (40.6)

   non‑sitting 262.6 (91.0)

     standing 193.7 (73.8)

     stepping 68.9 (27.1)
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outliers (plots not shown), indicating that the fit of the 
MLR models was adequate.

In general, DPB displayed more compelling evidence 
of associations with both sets (MFPCA based and 
POPAI based) of sitting pattern variables than SBP did. 
The strongest association was shown between DBP and 
level 1 PC1, the higher the PC1 values, the higher the 
DBP (p = 0.0009, p-FDR = 0.007), indicating a positive 
relationship. Recall that the level 1 PC1 eigenfunction 
was negative across the entire domain, which implied 
that participants with higher PC1 scores tended to have 
lower VM counts (and thus are more inactive). Hence, 
our regression results suggest that lower VM counts were 
associated with worse DBP values. Standardizing both 
PC scores and refitting the MLR revealed the re-esti-
mated β̂ (s.e) of PC1 score was 2.041 (0.607) suggesting 

1 unit increase in level 1 PC1 was associated with 2.04 
mmHg increase in DBP. No signficiant associations were 
detected between PC scores and SBP.

Similar positive association was also observed between 
DBP and POPAI average daily inactive sitting time (p = 
0.008, p-FDR = 0.03). Each minute increase in daily inac-
tive sitting time was associated with 0.02 mmHg increase 
in DBP (in other words, each hour increase in daily 
inactive sitting time was associated with a 1.20 mmHg 
increase in DBP). Standardizing both inactive and active 
sitting time, the re-estimated β̂ (s.e) of inactive sitting 
time was 1.636 (0.614) indicating 1 unit increase in daily 
inactive sitting time was associated with a 1.64 mmHg 
increase in DBP. In addition, there was a trend between 
SBP and POPAI average daily inactive sitting time, where 
each hour increase in daily inactive sitting time was 

Fig. 3 Participant‑level eigenfunctions (top) and mean function µ(t) (red) with addition (blue) or subtraction (green) of square root of two 
eigenvalues multiplying corresponding eigenfunctions (bottom)
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Fig. 4 Example fitting profiles in different participants on different days of MFPCA curves tracing the observed VM counts/minute (black 
dots) within sitting bouts by adding one element at a time based on model Eq. 1: 1. µ(t) ; 2. µ(t)+ ηj(t) ; 3. µ(t)+ ηj(t)+

∑2
k=1 ξikφ

(1)

k (t) ; 4. 
µ(t)+ ηj(t)+

∑2
k=1 ξikφ

(1)

k (t)+
∑6

l=1 ζijlφ
(2)

l (t) . a was the same participant‑day from Fig. 1 where a majority of VM counts were below 1000 cpm 
with notable size of those close to 0; b was a different participant on a different day where a large number of VM counts were still above 1000 cpm 
and fewer VM counts were close to 0

Table 2 Association of blood pressure with MFPCA/POPAI variables from MLR

1  Parameter estimates and their standard errors (s.e) from the MLR between independent variables (MFPCA or POPAI variables) and outcomes (SBP or DBP) controlling 
for other baseline characteristics, including age, race (ref: non-white), education (ref: below college), employment status (ref: not working), BMI, hypertension status 
(ref: no), as well as concurrent wearing days of devices and average daily non-sitting time

 2 p : p values from MLRs

 3 p-FDR : adjusted p values based on Benjamini and Hochberg false discovery rate (BH FDR) [34] accounted for 8 pairwise comparisons

 4 Standardized β̂ (s.e) = 2.041 (0.607) between DBP and level 1 PC1

 5 Standardized β̂ (s.e) = 1.636 (0.614) between DBP and inactive sitting time

Outcome Estimate MFPCA POPAI

Level 1 PC1 Level 1 PC2 Average daily inactive 
sitting time

Average daily 
active sitting 
time

SBP β̂ (s.e)1 0.014 (0.017) ‑0.026 (0.027) 0.025 (0.011) ‑0.018 (0.021)

p2 0.42 0.34 0.03 0.40

p‑FDR3 0.42 0.42 0.08 0.42

DBP β̂ (s.e) 0.040 (0.012)4 0.034 (0.019) 0.021 (0.008)5 ‑0.030 (0.015)

p 0.0009 0.07 0.008 0.05

p‑FDR 0.007 0.11 0.03 0.10
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associated with 1.50 mmHg increase in SBP (p = 0.03, 
p-FDR = 0.08).

Discussion
The current study brought the unique design and applica-
tion of FPCA into the field of accelerometer data in SB 
research. While most research has implemented FPCA 
on physical activity accelerometer (ActiGraph) data 
to explore temporal or intensity activity patterns, we 
time-matched both posture accelerometer and physi-
cal activity accelerometer data to scrutinize movement 
within the core event of SB, sitting. The novel construc-
tion of activity counts within posture-based sitting bouts 
placed all subjects and all wearing days under the same 
scale, hence, PC scores of each component are able to 
capture variation in movement within sitting bouts and 
thus are more interpretable. To demonstrate potential 
applications of this FPCA approach in public health, the 
current study assessed the person level PC scores and 
revealed the evidence that sitting with less movement 
was associated with higher DBP. While the POPAI based 
analyses also showed positive association between inac-
tive sitting time and higher DBP, it requires selection of 
a specific cut-point threshold (75 cpm in this case) to 
delineate active vs inactive sitting. Although use of cut-
points are very common in SB research, there is lack of 
agreement and consensus on the “best” cpm cut-points 
[36–38]. For instance, while a widely applied cut-point 
for adults wearing ActiGraph GT3X is VA < 100 cpm as 
SB [38], Aguilar-Farí as et al. [39] suggested VA < 25 cpm 
and Kozey-Keadle et al. [14] suggested VA < 150 cpm as 
SB. The difference can be substantial. Another limita-
tion of cut-point methods is that dichotomization does 
not make full use of the data in the accelerometer sig-
nal beyond or below the cut-point. These drawbacks can 
potentially attenuate or exaggerate the relationships of 
SB with health outcomes [40]. On the other hand, FPCA 
transforms the original functional data to a set of asymp-
totically equivalent independent PC scores and yields a 
parsimonious representation of the original data [41, 42]. 
The stronger signal in Table 2 for the level 1 PC1 could be 
an indication that FPCA grasped more information than 
the method based on the cut-point. Besides dimension 
reduction, FPCA attempts to characterize the dominant 
modes of variation of random trajectories around their 
overall mean [42] (demonstrated in Fig. 3c, d and Supple-
mentary Fig. A1b). Hence, it provides a robust alternative 
to study SB.

Given the increasing use of machine learning (ML) 
techniques in health behavior research, it is important to 
clarify the unique contributions of FPCA in this context. 
To our knowledge, current applications of ML (including 

our own work) [43–45] focus largely on posture or 
activity detection (e.g., siting, standing, walking etc), 
and hence involve binary or categorical classification of 
behaviors. FPCA on the other hand, uses the continuous 
data stream from the device to identify the main sources 
of variation in (movement) patterns, and is agnostic to 
categories of behavior. As such, MFPCA and ML provide 
complementary advantages: ML can identify the behav-
ior, and FPCA can elicit variation in movement during 
the behavior. Both methods are useful for understanding 
and quantifying human movement and associated health 
outcomes.

There are several limitations in our current study. First, 
FPCA is an exploratory statistical approach, and in this 
study, we investigated cross-sectional FPCA-based sit-
ting patterns in relation to the health outcomes at base-
line. Rise for Health [24] is a longitudinal randomized 
controlled trial, hence, the natural next step would be to 
extend the MFPCA model implemented in the current 
work to a 3-level model, in which participant is the level 
1, visit (baseline and final visit) is the level 2 and day is the 
level 3. The extension will not only bring us richer func-
tional data to model dynamic changes in movement pat-
terns, but will also allow us to compare outcomes across 
different arms, control (healthy aging) and two interven-
tion groups: reducing sitting and increasing sit-to-stand 
transitions. Besides blood pressure, additional health-
related outcomes can be considered. However, there are 
methodological complexities in extending the current 
MFPCA model to a longitudinal setup; we aim to explore 
this extension in future work. Second, in the current 
study, the day level PC scores were not incorporated into 
the association assessment, mainly because clinical data 
(outcomes) were not collected at the day-level. Applica-
tions that incorporate the day-level PCs could offer fur-
ther insights on sitting patterns. Third, the current daily 
sleeping time was self-reported, which could be suscepti-
ble to recall, response and social desirability bias [38]. In 
the recent release of activPAL scoring software, the built-
in algorithm can now identify “time in bed” start and 
“time in bed” end, which would facilitate our proposal 
to automate sleep time identification and removal in a 
more consistent fashion in the future. Fourth, our sam-
ples were overweight sedentary postmenopausal women, 
and majority were white and highly educated (i.e., college 
and above), which might not represent a broader older 
adult population. Lastly, the current MFPCA model was 
built based on minute level VM counts to align with the 
POPAI-based approach [6]. In theory, it is possible to 
extend the model to different epoch lengths, such as 15 
seconds. However, the computational feasibility might 
become a major challenge.
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To illustrate the potential application of our approach 
to public health studies, we evaluated associations 
between the FPCA-derived SB patterns and blood pres-
sure, and found that less movement during sitting was 
associated with higher diastolic blood pressure. While 
our health-related analysis was largely a proof of concept, 
our results have face validity. Prolonged sitting time, 
has been linked to increased blood pressure, especially 
after the age of 45 years in men and 5-10 years later in 
women, often after menopause [21, 23, 46, 47]. Reducing 
or interrupting prolonged sitting time (either by walking 
or taking standing breaks) has been shown to have SBP 
or DBP-lowering effects [22, 48–51]. Previous studies in 
office environments have recommended workplace inter-
ventions to break up prolonged SB by dynamic chairs to 
encourage movements [52, 53]. It has been shown that 
energy expenditure increased significantly either using 
an under-table leg-fidget bar or a fidget-promoting chair 
compared to the standard office chair [54]; hence, one of 
the approaches could be to render sitting more active, 
called “dynamic sitting”, to provide an alternative for 
when standing or getting up from a desk is not feasible 
[53, 54]. While the types of active sitting in these previous 
studies may differ from our study, our findings support a 
proposition of replacing more inactive sitting with active 
sitting. We emphasize that we are not recommending 
replacing physical activity with active sitting. However 
for some populations, such as highly sedentary, elderly, 
and/or overweight individuals as in our study sample, 
or those with comorbidities or physically disabled sub-
populations, adhering to physical activity guidelines may 
not be feasible. For these populations light activity and 
active sitting may provide viable alternatives and a more 
achievable path to healthy living. Studies have suggested 
that non-exercise activity thermogenesis (NEAT) has the 
potential to prompt energy expenditure over time with 
a higher rate of adherence [55]. More research, includ-
ing longitudinal studies as well as intervention trials, are 
needed to further examine and evaluate the impact of 
active sitting patterns on health-related outcomes.

Conclusion
To our knowledge, this is the first study to develop a 
MFPCA approach for examining movement during SB. 
The unique design of time-matching both the posture-
based activPAL and movement-based ActiGraph acceler-
ometer data and applying FPCA to triaxial activity counts 
within sitting time take advantage of the rich minute-
level data rather than daily or weekly summary metrics, 
and furthermore avoids the use of cut-point thresholds at 
the same time. We believe this approach offers a powerful 
statistical tool to elucidate variation in SB patterns and 
health [56–58].
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