Skip to main content

Table 5 Summary of the findings from the studies assessing fitness outcomes

From: Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: a systematic scoping review of isotemporal substitution studies

Study

Sample and study design

Measures of sleep, SB, LPA, MVPA

Outcome measures

Data analysis method / reallocated time

Adjustments for confounding

Results

Aggio et al. [44]

Children and youth (n = 353) from the Camden Active Spaces project, UK; cross-sectional

SB, LPA, MVPA – waist-worn accelerometers; sleep – not assessed

Hand grip strength, horizontal jump distance, flexibility, peak expiratory flow

Mekary et al. [12] / 60 min

Age, sex, ethnicity, height and school deprivation.

β (95% CI)

Hand grip strength

SB ↔ LPA: 0.509 (0.000, 1.019)

SB ↔ MVPA: 0.511 (− 1.139, 2.161)

LPA ↔ MVPA: 0.002 (− 1.760, 1.763)

Horizontal jump distance

SB ↔ LPA: 0.409 (− 2.252, 3.070)

SB ↔ MVPA: 16.093 (7.476, 24.710)

LPA ↔ MVPA: 15.684 (6.484, 24.885)

Peak expiratory flow

SB ↔ LPA: − 0.149 (− 7.569, 7.298)

SB ↔ MVPA: 5.389 (− 18.728, 29.506)

LPA ↔ MVPA: 5.538 (− 20.210, 31.287)

Flexibility

SB ↔ LPA: − 0.048 (− 0.935, 0.839)

SB ↔ MVPA: 4.783 (1.910, 7.656)

LPA ↔ MVPA: 4.831 (1.764, 7.899)

Collings et al. [20]

Children (n = 410) from the Physical Activity and Nutrition in Children study, Finland; cross-sectional

Sleep, SB, LPA, MPA, VPA – heart rate and movement sensor

CRF

Mekary et al. [12] / 10 min

Age, sex, monitor wear characteristics, income, sleep duration, energy intake, frequency of breakfast consumption, number of meals per day, snacking, birth weight, maternal and paternal BMI. When FMI, TFMI and FFMI were outcomes further adjustment for CRF was made. CRF was adjusted for FMI.

β (95% CI)

SB → LPA: − 0.0038 (− 0.010, 0.0027)

SB → MPA: 0.014 (0.0064, 0.022)

SB → VPA: 0.098 (0.040, 0.16)

LPA → MPA: 0.018 (0.0054, 0.031)

LPA → VPA: 0.10 (0.046, 0.16)

MPA → VPA: 0.083 (0.024, 0.14)

Ekblom-Bak et al. [52]

Adults (n = 654) from the Swedish Cardio Pulmonary bioImage Study, Sweden; cross-sectional

SB, LPA, MVPA – waist-worn accelerometers; sleep – not assessed

VO2max

Mekary et al. [12] / 1, 5, 10, 15, 20, 25, 30, 60, 90 and 120 min

Sex, age, education, smoking, perceived psychosocial stress.

OR (95% CI)

30 min reallocation

VO2max (women < 32 and men < 35 ml·min-1·kg-1)

SB → LPA: 0.953 (0.926, 0.982)

SB → MVPA: 0.870 (0.794, 0.953)

VO2max (women ≥32 and men ≥35 ml·min-1·kg-1)

SB → LPA: 0.989 (0.966, 1.013)

SB → MVPA: 0.904 (0.851, 0.960)

Fairclough et al. [25]

Children (n = 169) from the Active Schools Skelmersdale study, UK; cross-sectional

SB, LPA, MVPA – wrist-worn accelerometers; sleep – estimated from the ActiGraph raw accelerations

CRF

Dumuid et al. [14] / 15 min

IMD decile, age, sex, and BMI.

Reallocating 15 min from MVPA to sleep, SB or LPA predicted higher adiposity and lower CRF.

Reallocating time to MVPA from sleep, SB or LPA increased the magnitude of estimated detriments for fitness and adiposity. Furthermore, the detriments were larger in magnitude than the estimated benefits of time reallocation from MVPA to sleep, SB or LPA.

Kim [61]

Older woman (n = 101), from the Itabashi ward, metropolitan Tokyo, Japan; cross-sectional

SB (prolonged SB and non-prolonged SB), LPA, MVPA – wrist-worn accelerometers; sleep – not assessed

Usual gait speed, maximum gait speed, 5-chair sit-to-stand, and timed up-and-go tests

Mekary et al. [12] / 30 min

Age, BMI, education, living conditions, smoking, alcohol consumption, number of medical conditions, and Tokyo metropolitan institute of gerontology score.

β (95% CI)

Usual walking speed

Prolonged SB → non-prolonged SB: 0.013 (− 0.017, 0.043)

Prolonged SB → LPA: − 0.032 (− 0.076, 0.013)

Prolonged SB → MVPA: 0.240 (0.133, 0.346)

Non-prolonged SB → LPA: − 0.045 (− 0.090, 0.000)

Non-prolonged SB → MVPA: 0.226 (0.120, 0.332)

LPA → MVPA: 0.271 (0.137, 0.405)

Maximum walking speed

Prolonged SB → non-prolonged SB: − 0.010 (− 0.049, 0.030)

Prolonged SB → LPA: − 0.052 (− 0.108, 0.004)

Prolonged SB → MVPA: 0.240 (0.0105, 0.375)

Non-prolonged SB → LPA: − 0.043 (− 0.099, 0.013)

Non-prolonged SB → MVPA: 0.250 (0.116, 0.383)

LPA → MVPA: 0.292 (0.124, 0.460)

5 chair sit-to-stand

Prolonged SB → non-prolonged SB: 0.298 (− 0.031, 0626)

Prolonged SB → LPA: − 0.024 (− 0.496, 0.447)

Prolonged SB → MVPA: − 0.960 (− 2.130, 0.209)

Non-prolonged SB → LPA: − 0.322 (− 0.802, 0.158)

Non-prolonged SB → MVPA: − 1.258 (− 2.417, − 0.098)

LPA → MVPA: − 0.937 (− 2.397, 0.522)

Timed Up and Go

Prolonged SB → non-prolonged SB: − 0.468 (− 0.824, − 0.112)

Prolonged SB → LPA: − 0.065 (− 0.591, 0.461)

Prolonged SB → MVPA: − 2.264 (− 3.557, − 0.970)

Non-prolonged SB → LPA: 0.404 (− 0.128, 0.935)

Non-prolonged SB → MVPA: − 1.796 (− 3.082, − 0.510)

LPA → MVPA: − 2.199 (− 3.816, − 0.581)

Leppänen et al. [63]

Four year old children (n = 307) from the MINISTOP trial, Sweden; cross-sectional

Sleep, SB, LPA, MPA, VPA – wrist-worn accelerometers

20-m shuttle run test, handgrip strength, standing long jump test and a 4 × 10-m shuttle run test

Mekary et al. [12] / 5 min

Maternal BMI and educational attainment, paternal BMI and educational attainment, child’s age and sex at the measurement and awake wearing time of the ActiGraph.

β (95% CI)

20-m shuttle run test

SB ↔ LPA: −  0.05 (− 0.12, 0.03)

SB ↔ MPA: 0.01 (− 0.08, 0.10)

SB ↔ VPA: 0.87 (0.53, 1.22)

LPA ↔ MPA: 0.06 (− 0.08, 0.20)

LPA ↔ VPA: 0.92 (0.59, 1.25)

MPA ↔ VPA: 0.86 (0.47, 1.26)

Handgrip strength

SB ↔ LPA: − 0.00 (− 0.05, 0.04)

SB ↔ MPA: 0.03 (− 0.02, 0.09)

SB ↔ VPA: 0.17 (− 0.04, 0.38)

LPA ↔ MPA: 0.04 (− 0.05, 0.12)

LPA ↔ VPA: 0.17 (− 0.03, 0.38)

MPA ↔ VPA: 0.14 (− 0.10, 0.38)

Standing long jump

SB ↔ LPA: − 0.46 (− 0.90, − 0.02)

SB ↔ MPA: 0.40 (− 0.14, 0.94)

SB ↔ VPA: 2.09 (0.01, 4.17)

LPA ↔ MPA: 0.86 (0.00, 1.71)

LPA ↔ VPA: 2.55 (0.53, 4.56)

MPA ↔ VPA: 1.68 (− 0.74, 4.10)

4 × 10 m-shuttle run

SB ↔ LPA: 0.03 (− 0.03, 0.08)

SB ↔ MPA: − 0.00 (− 0.07, 0.07)

SB ↔ VPA: − 0.62 (− 0.88, − 0.36)

LPA ↔ MPA: − 0.03 (− 0.13, 0.08)

LPA ↔ VPA: − 0.65 (− 0.90, − 0.40)

MPA ↔ VPA: − 0.62 (− 0.92, − 0.32)

Leppänen et al. [27]

Four year old children (n = 138) from the MINISTOP trial, Sweden; prospective cohort

Sleep, SB, LPA, MPA, VPA – wrist-worn accelerometers

20-m shuttle run test, handgrip strength, standing long jump test and a 4 × 10-m shuttle run test

Mekary et al. [12] / 5 min

Child’s age, sex at measurement, awake wearing time, models with SB or MPA as exposures were adjusted for VPA, while models with VPA or MVPA were adjusted for SB.

Reallocating 5 min from SB to LPA or MPA to VPA at baseline was associated with a better handgrip strength and with longer jumps at 12-month follow-up.

Van der Velde et al. [36]

Adults (n = 2024) from The Maastricht Study, Netherlands; cross-sectional

SB, standing, LPA, MVPA – thigh-worn accelerometers; sleep – not assessed

CRF

Mekary et al. [12] / 60 min

Age, education level, type 2 diabetes, BMI, alcohol use, smoking status, cardio vascular disease, beta-blocker use, energy intake and mobility limitations

β (95% CI)

Men

SB → standing: 0.01 (− 0.02, 0.04)

SB → LPA: 0.08 (0.03, 0.14)

SB → MVPA: 0.49 (0.39, 0.59)

Women

SB → standing: − 0.00 (− 0.02, 0.02)

SB → LPA: 0.10 (0.05, 0.16)

SB → MVPA: 0.28 (0.19, 0.36)

  1. SB sedentary behaviour, LPA light intensity physical activity, MVPA moderate-to-vigorous intensity physical activity, MPA moderate intensity physical activity, VPA vigorous intensity physical activity, BMI body mass index, CRF cardiorespiratory fitness, VO2max maximal oxygen consumption, IMD indices of multiple deprivation, CI confidence interval, OR odds ratio