Skip to main content

Table 5 Summary of the findings from the studies assessing fitness outcomes

From: Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: a systematic scoping review of isotemporal substitution studies

Study Sample and study design Measures of sleep, SB, LPA, MVPA Outcome measures Data analysis method / reallocated time Adjustments for confounding Results
Aggio et al. [44] Children and youth (n = 353) from the Camden Active Spaces project, UK; cross-sectional SB, LPA, MVPA – waist-worn accelerometers; sleep – not assessed Hand grip strength, horizontal jump distance, flexibility, peak expiratory flow Mekary et al. [12] / 60 min Age, sex, ethnicity, height and school deprivation. β (95% CI)
Hand grip strength
SB ↔ LPA: 0.509 (0.000, 1.019)
SB ↔ MVPA: 0.511 (− 1.139, 2.161)
LPA ↔ MVPA: 0.002 (− 1.760, 1.763)
Horizontal jump distance
SB ↔ LPA: 0.409 (− 2.252, 3.070)
SB ↔ MVPA: 16.093 (7.476, 24.710)
LPA ↔ MVPA: 15.684 (6.484, 24.885)
Peak expiratory flow
SB ↔ LPA: − 0.149 (− 7.569, 7.298)
SB ↔ MVPA: 5.389 (− 18.728, 29.506)
LPA ↔ MVPA: 5.538 (− 20.210, 31.287)
Flexibility
SB ↔ LPA: − 0.048 (− 0.935, 0.839)
SB ↔ MVPA: 4.783 (1.910, 7.656)
LPA ↔ MVPA: 4.831 (1.764, 7.899)
Collings et al. [20] Children (n = 410) from the Physical Activity and Nutrition in Children study, Finland; cross-sectional Sleep, SB, LPA, MPA, VPA – heart rate and movement sensor CRF Mekary et al. [12] / 10 min Age, sex, monitor wear characteristics, income, sleep duration, energy intake, frequency of breakfast consumption, number of meals per day, snacking, birth weight, maternal and paternal BMI. When FMI, TFMI and FFMI were outcomes further adjustment for CRF was made. CRF was adjusted for FMI. β (95% CI)
SB → LPA: − 0.0038 (− 0.010, 0.0027)
SB → MPA: 0.014 (0.0064, 0.022)
SB → VPA: 0.098 (0.040, 0.16)
LPA → MPA: 0.018 (0.0054, 0.031)
LPA → VPA: 0.10 (0.046, 0.16)
MPA → VPA: 0.083 (0.024, 0.14)
Ekblom-Bak et al. [52] Adults (n = 654) from the Swedish Cardio Pulmonary bioImage Study, Sweden; cross-sectional SB, LPA, MVPA – waist-worn accelerometers; sleep – not assessed VO2max Mekary et al. [12] / 1, 5, 10, 15, 20, 25, 30, 60, 90 and 120 min Sex, age, education, smoking, perceived psychosocial stress. OR (95% CI)
30 min reallocation
VO2max (women < 32 and men < 35 ml·min-1·kg-1)
SB → LPA: 0.953 (0.926, 0.982)
SB → MVPA: 0.870 (0.794, 0.953)
VO2max (women ≥32 and men ≥35 ml·min-1·kg-1)
SB → LPA: 0.989 (0.966, 1.013)
SB → MVPA: 0.904 (0.851, 0.960)
Fairclough et al. [25] Children (n = 169) from the Active Schools Skelmersdale study, UK; cross-sectional SB, LPA, MVPA – wrist-worn accelerometers; sleep – estimated from the ActiGraph raw accelerations CRF Dumuid et al. [14] / 15 min IMD decile, age, sex, and BMI. Reallocating 15 min from MVPA to sleep, SB or LPA predicted higher adiposity and lower CRF.
Reallocating time to MVPA from sleep, SB or LPA increased the magnitude of estimated detriments for fitness and adiposity. Furthermore, the detriments were larger in magnitude than the estimated benefits of time reallocation from MVPA to sleep, SB or LPA.
Kim [61] Older woman (n = 101), from the Itabashi ward, metropolitan Tokyo, Japan; cross-sectional SB (prolonged SB and non-prolonged SB), LPA, MVPA – wrist-worn accelerometers; sleep – not assessed Usual gait speed, maximum gait speed, 5-chair sit-to-stand, and timed up-and-go tests Mekary et al. [12] / 30 min Age, BMI, education, living conditions, smoking, alcohol consumption, number of medical conditions, and Tokyo metropolitan institute of gerontology score. β (95% CI)
Usual walking speed
Prolonged SB → non-prolonged SB: 0.013 (− 0.017, 0.043)
Prolonged SB → LPA: − 0.032 (− 0.076, 0.013)
Prolonged SB → MVPA: 0.240 (0.133, 0.346)
Non-prolonged SB → LPA: − 0.045 (− 0.090, 0.000)
Non-prolonged SB → MVPA: 0.226 (0.120, 0.332)
LPA → MVPA: 0.271 (0.137, 0.405)
Maximum walking speed
Prolonged SB → non-prolonged SB: − 0.010 (− 0.049, 0.030)
Prolonged SB → LPA: − 0.052 (− 0.108, 0.004)
Prolonged SB → MVPA: 0.240 (0.0105, 0.375)
Non-prolonged SB → LPA: − 0.043 (− 0.099, 0.013)
Non-prolonged SB → MVPA: 0.250 (0.116, 0.383)
LPA → MVPA: 0.292 (0.124, 0.460)
5 chair sit-to-stand
Prolonged SB → non-prolonged SB: 0.298 (− 0.031, 0626)
Prolonged SB → LPA: − 0.024 (− 0.496, 0.447)
Prolonged SB → MVPA: − 0.960 (− 2.130, 0.209)
Non-prolonged SB → LPA: − 0.322 (− 0.802, 0.158)
Non-prolonged SB → MVPA: − 1.258 (− 2.417, − 0.098)
LPA → MVPA: − 0.937 (− 2.397, 0.522)
Timed Up and Go
Prolonged SB → non-prolonged SB: − 0.468 (− 0.824, − 0.112)
Prolonged SB → LPA: − 0.065 (− 0.591, 0.461)
Prolonged SB → MVPA: − 2.264 (− 3.557, − 0.970)
Non-prolonged SB → LPA: 0.404 (− 0.128, 0.935)
Non-prolonged SB → MVPA: − 1.796 (− 3.082, − 0.510)
LPA → MVPA: − 2.199 (− 3.816, − 0.581)
Leppänen et al. [63] Four year old children (n = 307) from the MINISTOP trial, Sweden; cross-sectional Sleep, SB, LPA, MPA, VPA – wrist-worn accelerometers 20-m shuttle run test, handgrip strength, standing long jump test and a 4 × 10-m shuttle run test Mekary et al. [12] / 5 min Maternal BMI and educational attainment, paternal BMI and educational attainment, child’s age and sex at the measurement and awake wearing time of the ActiGraph. β (95% CI)
20-m shuttle run test
SB ↔ LPA: −  0.05 (− 0.12, 0.03)
SB ↔ MPA: 0.01 (− 0.08, 0.10)
SB ↔ VPA: 0.87 (0.53, 1.22)
LPA ↔ MPA: 0.06 (− 0.08, 0.20)
LPA ↔ VPA: 0.92 (0.59, 1.25)
MPA ↔ VPA: 0.86 (0.47, 1.26)
Handgrip strength
SB ↔ LPA: − 0.00 (− 0.05, 0.04)
SB ↔ MPA: 0.03 (− 0.02, 0.09)
SB ↔ VPA: 0.17 (− 0.04, 0.38)
LPA ↔ MPA: 0.04 (− 0.05, 0.12)
LPA ↔ VPA: 0.17 (− 0.03, 0.38)
MPA ↔ VPA: 0.14 (− 0.10, 0.38)
Standing long jump
SB ↔ LPA: − 0.46 (− 0.90, − 0.02)
SB ↔ MPA: 0.40 (− 0.14, 0.94)
SB ↔ VPA: 2.09 (0.01, 4.17)
LPA ↔ MPA: 0.86 (0.00, 1.71)
LPA ↔ VPA: 2.55 (0.53, 4.56)
MPA ↔ VPA: 1.68 (− 0.74, 4.10)
4 × 10 m-shuttle run
SB ↔ LPA: 0.03 (− 0.03, 0.08)
SB ↔ MPA: − 0.00 (− 0.07, 0.07)
SB ↔ VPA: − 0.62 (− 0.88, − 0.36)
LPA ↔ MPA: − 0.03 (− 0.13, 0.08)
LPA ↔ VPA: − 0.65 (− 0.90, − 0.40)
MPA ↔ VPA: − 0.62 (− 0.92, − 0.32)
Leppänen et al. [27] Four year old children (n = 138) from the MINISTOP trial, Sweden; prospective cohort Sleep, SB, LPA, MPA, VPA – wrist-worn accelerometers 20-m shuttle run test, handgrip strength, standing long jump test and a 4 × 10-m shuttle run test Mekary et al. [12] / 5 min Child’s age, sex at measurement, awake wearing time, models with SB or MPA as exposures were adjusted for VPA, while models with VPA or MVPA were adjusted for SB. Reallocating 5 min from SB to LPA or MPA to VPA at baseline was associated with a better handgrip strength and with longer jumps at 12-month follow-up.
Van der Velde et al. [36] Adults (n = 2024) from The Maastricht Study, Netherlands; cross-sectional SB, standing, LPA, MVPA – thigh-worn accelerometers; sleep – not assessed CRF Mekary et al. [12] / 60 min Age, education level, type 2 diabetes, BMI, alcohol use, smoking status, cardio vascular disease, beta-blocker use, energy intake and mobility limitations β (95% CI)
Men
SB → standing: 0.01 (− 0.02, 0.04)
SB → LPA: 0.08 (0.03, 0.14)
SB → MVPA: 0.49 (0.39, 0.59)
Women
SB → standing: − 0.00 (− 0.02, 0.02)
SB → LPA: 0.10 (0.05, 0.16)
SB → MVPA: 0.28 (0.19, 0.36)
  1. SB sedentary behaviour, LPA light intensity physical activity, MVPA moderate-to-vigorous intensity physical activity, MPA moderate intensity physical activity, VPA vigorous intensity physical activity, BMI body mass index, CRF cardiorespiratory fitness, VO2max maximal oxygen consumption, IMD indices of multiple deprivation, CI confidence interval, OR odds ratio