2018 Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Scientific Report. In: Services USDoHaH, editor. Washington2018.
Katzmarzyk PT, Powell KE, Jakicic JM, Troiano RP, Piercy K, Tennant B, et al. Sedentary behavior and health: update from the 2018 physical activity guidelines advisory committee. Med Sci Sports Exerc. 2019;51(6):1227.
Article
PubMed
PubMed Central
Google Scholar
Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123.
Article
PubMed
Google Scholar
Patterson R, McNamara E, Tainio M, de Sá TH, Smith AD, Sharp SJ, et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Springer; 2018.
Bailey DP, Hewson DJ, Champion RB, Sayegh SM. Sitting time and risk of cardiovascular disease and diabetes: a systematic review and meta-analysis. Am J Prev Med. 2019;57(3):408–16.
Article
PubMed
Google Scholar
Pandey A, Salahuddin U, Garg S, Ayers C, Kulinski J, Anand V, et al. Continuous dose-response association between sedentary time and risk for cardiovascular disease: a meta-analysis. JAMA Cardiol. 2016;1(5):575–83.
Article
PubMed
Google Scholar
Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary behavior research network (SBRN)–terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75.
Article
PubMed
PubMed Central
Google Scholar
Norton K, Norton L, Sadgrove D. Position statement on physical activity and exercise intensity terminology. J Sci Med Sport. 2010;13(5):496–502.
Article
PubMed
Google Scholar
Australian Bureau of Statistics. Australian Health Survey: physical activity 2011–12. Canberra: ABS; 2013.
Australian Bureau of Statistics. National Health Survey: First results 2017–2018. Canberra; 2018.
Shrestha N, Kukkonen‐Harjula KT, Verbeek JH, Ijaz S, Hermans V, Pedisic Z. Workplace interventions for reducing sitting at work. Cochrane Database Syst Rev. 2018(6).
Nguyen P, Le LK- D, Nguyen D, Gao L, Dunstan DW, Moodie M. The effectiveness of sedentary behaviour interventions on sitting time and screen time in children and adults: an umbrella review of systematic reviews. Int J Behav Nutr Phys Act. 2020;17(1):1–11.
Peachey MM, Richardson J, Tang AV, Haas VD-B, Gravesande J. Environmental, behavioural and multicomponent interventions to reduce adults’ sitting time: a systematic review and meta-analysis. Brit J Sports Med. 2020;54(6):315–25.
Blackburn NE, Wilson JJ, McMullan II, Caserotti P, Giné-Garriga M, Wirth K, et al. The effectiveness and complexity of interventions targeting sedentary behaviour across the lifespan: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2020;17(1):53.
Article
PubMed
PubMed Central
Google Scholar
Gao L, Nguyen P, Dunstan D, Moodie M. Are Office-Based Workplace Interventions Designed to Reduce Sitting Time Cost-Effective Primary Prevention Measures for Cardiovascular Disease? A Systematic Review and Modelled Economic Evaluation. Int J Environ Res Public Health. 2019;16(5):834.
Article
PubMed Central
Google Scholar
Gao L, Flego A, Dunstan DW, Winkler EA, Healy GN, Eakin EG, et al. Economic evaluation of a randomized controlled trial of an intervention to reduce office workers’ sitting time: the" Stand Up Victoria" trial. Scand J Work Environ Health. 2018;44(5):503–11.
Article
PubMed
Google Scholar
Munir F, Miller P, Biddle SJH, Davies MJ, Dunstan DW, Esliger DW, et al. A Cost and Cost-Benefit Analysis of the Stand More AT Work (SMArT Work) Intervention. Int J Environ Res Public Health. 2020;17(4):1214.
Article
PubMed Central
Google Scholar
Ben ÂJ, Jelsma JGM, Renaud LR, Huysmans MA, van Nassau F, van der Beek AJ, et al. Cost-Effectiveness and Return-on-Investment of the Dynamic Work Intervention Compared With Usual Practice to Reduce Sedentary Behavior. J Occup Environ Med. 2020;62(8):e449–56.
Article
PubMed
Google Scholar
Crosland P, Ananthapavan J, Davison J, Lambert M, Carter R. The economic cost of preventable disease in Australia: a systematic review of estimates and methods. Aust N Z J Public Health. 2019;43(5):484–95.
Article
PubMed
Google Scholar
Heron L, O’Neill C, McAneney H, Kee F, Tully MA. Direct healthcare costs of sedentary behaviour in the UK. J Epidemiol Community Health. 2019;73(7):625–9.
Ananthapavan J, Sacks G, Brown V, Moodie M, Nguyen P, Barendregt J, et al. Assessing Cost-effectiveness of Obesity Prevention Policies in Australia. ACE-Obesity Policy 2018. Melbourne: Deakin University; 2018.
Ananthapavan J, Sacks G, Brown V, Moodie M, Nguyen P, Veerman L, et al. Priority-setting for obesity prevention—The Assessing Cost-Effectiveness of obesity prevention policies in Australia (ACE-Obesity Policy) study. PloS one. 2020;15(6).
Brown V, Moodie M, Cobiac L, Herrera AM, Carter R. Obesity-related health impacts of fuel excise taxation-an evidence review and cost-effectiveness study. BMC Public Health. 2017;17(1):359.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lal A, Mantilla-Herrera AM, Veerman L, Backholer K, Sacks G, Moodie M, et al. Modelled health benefits of a sugar-sweetened beverage tax across different socioeconomic groups in Australia: A cost-effectiveness and equity analysis. PLOS Med. 2017;14(6):e1002326.
Article
PubMed
PubMed Central
Google Scholar
Crino M, Herrera AMM, Ananthapavan J, Wu JH, Neal B, Lee YY, et al. Modelled cost-effectiveness of a package size cap and a kilojoule reduction intervention to reduce energy intake from sugar-sweetened beverages in Australia. Nutrients. 2017;9(9):983.
Article
PubMed Central
Google Scholar
Brown V, Ananthapavan J, Veerman L, Sacks G, Lal A, Peeters A, et al. The Potential Cost-Effectiveness and Equity Impacts of Restricting Television Advertising of Unhealthy Food and Beverages to Australian Children. Nutrients. 2018;10(5):622.
Article
PubMed Central
Google Scholar
Mantilla Herrera A, Crino M, Erskine H, Sacks G, Ananthapavan J, Mhurchu C, et al. Cost-Effectiveness of Product Reformulation in Response to the Health Star Rating Food Labelling System in Australia. Nutrients. 2018;10(5):614.
Article
PubMed Central
Google Scholar
van der Ploeg HP, Chey T, Korda RJ, Banks E, Bauman A. Sitting time and all-cause mortality risk in 222 497 Australian adults. Arch Intern Med. 2012;172(6):494–500.
Article
PubMed
Google Scholar
Clark BK, Lynch BM, Winkler EA, Gardiner PA, Healy GN, Dunstan DW, et al. Validity of a multi-context sitting questionnaire across demographically diverse population groups: AusDiab3. Int J Behav Nutr Phys Act. 2015;12(1):1–9.
Article
CAS
Google Scholar
Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, Fagerland MW, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ. 2019;366:14570.
Google Scholar
Australian Bureau of Statistics. 4324.0.55.001 - Microdata: National Health Survey, 2014–15. In: ABS, editor. Canberra2016.
Gold MR, Stevenson D, Fryback DG. HALYS and QALYS and DALYS, Oh My: similarities and differences in summary measures of population Health. Annu Rev Public Health. 2002;23(1):115–34.
Article
PubMed
Google Scholar
Salomon JA, Vos T, Hogan DR, Gagnon M, Naghavi M, Mokdad A, et al. Common values in assessing health outcomes from disease and injury: disability weights measurement study for the Global Burden of Disease Study 2010. The Lancet. 2012;380(9859):2129–43.
Article
Google Scholar
Forster M, Veerman JL, Barendregt JJ, Vos T. Cost-effectiveness of diet and exercise interventions to reduce overweight and obesity. Int J Obes. 2011;35(8):1071–8.
Article
CAS
Google Scholar
Barendregt JJ, Veerman JL. Categorical versus continuous risk factors and the calculation of potential impact fractions. J Epidemiol Community Health. 2010;64(3):209–12.
Article
PubMed
Google Scholar
Zapata-Diomedi B, Barendregt JJ, Veerman JL. Population attributable fraction: names, types and issues with incorrect interpretation of relative risks. BMJ Publishing Group Ltd and British Association of Sport and Exercise Medicine; 2016.
Zapata-Diomedi B, Knibbs LD, Ware RS, Heesch KC, Tainio M, Woodcock J, et al. A shift from motorised travel to active transport: What are the potential health gains for an Australian city? PLoS One. 2017;12(10).
Barendregt JJ, Van Oortmarssen GJ, Vos T, Murray CJ. A generic model for the assessment of disease epidemiology: the computational basis of DisMod II. Popul Health Metrics. 2003;1(1):1–8.
Article
Google Scholar
Mathers CD, Vos T, Lopez AD, Salomon J, (ed.) EM. National burden of disease studies: A practical guide. Edition 2.0. Geneva: World Health Organization; 2001.
Institute for Health Metrics and Evaluation. GBD Results Tool. In: Exchange GHD, editor. Seattle WA: University of Washington2021.
Australian Institute of Health and Welfare. Health system expenditure on disease and injury in Australia, 2000–01. Canberra: AIHW; 2004.
Australian Institute of Health and Welfare. Health expenditure Australia 2014–15. Canberra: AIHW; 2016.
Australian Institute of Health and Welfare. Australia’s health 2018. Canberra: AIHW; 2018.
Australian Institute of Health and Welfare. Disease Expenditure Study: Overview of analysis and methodology 2015–16. Cat. no. HWE 76. Canberra: AIHW; 2019.
Healy GN, Eakin EG, Owen N, Lamontagne AD, Moodie M, Winkler EA, et al. A cluster randomized controlled trial to reduce office workers’ sitting time: impact on activity outcomes. Med Sci Sports Exerc. 2016;48(9):1787–97.
Johnsson A, Broberg P, Johnsson A, Tornberg ÅB, Olsson H. Occupational sedentariness and breast cancer risk. Acta Oncol. 2017;56(1):75–80.
Article
PubMed
Google Scholar
Nomura SJO, Dash C, Sheppard VB, Bowen D, Allison M, Barrington W, et al. Sedentary time and postmenopausal breast cancer incidence. Cancer Causes Control. 2017;28(12):1405–16.
Article
PubMed
PubMed Central
Google Scholar
Patel AV, Hildebrand JS, Campbell PT, Teras LR, Craft LL, McCullough ML, et al. Leisure-Time Spent Sitting and Site-Specific Cancer Incidence in a Large U.S. Cohort. Cancer Epidemiol Biomarkers Prev. 2015;24(9):1350–9.
Rosenberg L, Palmer JR, Bethea TN, Ban Y, Kipping-Ruane K, Adams-Campbell LL. A Prospective Study of Physical Activity and Breast Cancer Incidence in African-American Women. Cancer Epidemiol Biomark Prev. 2014;23(11):2522–31.
Article
Google Scholar
Gorczyca AM, Eaton CB, LaMonte MJ, Garcia DO, Johnston JD, He K, et al. Association of physical activity and sitting time with incident colorectal cancer in postmenopausal women. Eur J Cancer Prev. 2018;27(4):331.
Article
PubMed
PubMed Central
Google Scholar
Howard RA, Freedman DM, Park Y, Hollenbeck A, Schatzkin A, Leitzmann MF. Physical activity, sedentary behavior, and the risk of colon and rectal cancer in the NIH-AARP Diet and Health Study. Cancer Causes Control. 2008;19(9):939–53.
Article
PubMed
PubMed Central
Google Scholar
Keum N, Cao Y, Oh H, Smith-Warner SA, Orav J, Wu K, et al. Sedentary behaviors and light-intensity activities in relation to colorectal cancer risk. Int J Cancer. 2016;138(9):2109–17.
Article
CAS
PubMed
Google Scholar
Friberg E, Mantzoros CS, Wolk A. Physical activity and risk of endometrial cancer: a population-based prospective cohort study. Cancer Epidemiology and Prevention Biomarkers. 2006;15(11):2136–40.
Article
Google Scholar
Gierach GL, Chang SC, Brinton LA, Lacey JV Jr, Hollenbeck AR, Schatzkin A, et al. Physical activity, sedentary behavior, and endometrial cancer risk in the NIH-AARP Diet and Health Study. Int J Cancer. 2009;124(9):2139–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel AV, Feigelson HS, Talbot JT, McCullough ML, Rodriguez C, Patel RC, et al. The role of body weight in the relationship between physical activity and endometrial cancer: results from a large cohort of US women. Int J Cancer. 2008;123(8):1877–82.
Article
CAS
PubMed
Google Scholar
Anjana RM, Sudha V, Nair DH, Lakshmipriya N, Deepa M, Pradeepa R, et al. Diabetes in Asian Indians—How much is preventable? Ten-year follow-up of the Chennai Urban Rural Epidemiology Study (CURES-142). Diabetes Res Clin Pract. 2015;109(2):253–61.
Article
PubMed
Google Scholar
Manini TM, LaMonte MJ, Seguin RA, Manson JE, Hingle M, Garcia L, et al. Modifying effect of obesity on the association between sitting and incident diabetes in post-menopausal women. Obesity. 2014;22(4):1133–41.
Article
PubMed
Google Scholar
Joseph JJ, Echouffo-Tcheugui JB, Golden SH, Chen H, Jenny NS, Carnethon MR, et al. Physical activity, sedentary behaviors and the incidence of type 2 diabetes mellitus: the Multi-Ethnic Study of Atherosclerosis (MESA). BMJ Open Diab Res Care. 2016;4(1):e000185.
Article
PubMed
PubMed Central
Google Scholar
Åsvold BO, Midthjell K, Krokstad S, Rangul V, Bauman A. Prolonged sitting may increase diabetes risk in physically inactive individuals: an 11 year follow-up of the HUNT Study. Norway Diabetologia. 2017;60(5):830–5.
Article
PubMed
Google Scholar
Stamatakis E, Pulsford RM, Brunner EJ, Britton AR, Bauman AE, Biddle SJ, et al. Sitting behaviour is not associated with incident diabetes over 13 years: the Whitehall II cohort study. Br J Sports Med. 2017;51(10):818–23.
Article
PubMed
Google Scholar
Petersen CB, Bauman A, Tolstrup JS. Total sitting time and the risk of incident diabetes in Danish adults (the DANHES cohort) over 5 years: a prospective study. Br J Sports Med. 2016;50(22):1382–7.
Article
PubMed
Google Scholar
Chomistek AK, Manson JE, Stefanick ML, Lu B, Sands-Lincoln M, Going SB, et al. Relationship of sedentary behavior and physical activity to incident cardiovascular disease: results from the Women’s Health Initiative. J Am Coll Cardiol. 2013;61(23):2346–54.
Thorp AA, McNaughton SA, Owen N, Dunstan DW. Independent and joint associations of TV viewing time and snack food consumption with the metabolic syndrome and its components; a cross-sectional study in Australian adults. Int J Behav Nutr Phys Act. 2013;10(1):1–11.
Article
Google Scholar
LeBlanc AG, Gunnell KE, Prince SA, Saunders TJ, Barnes JD, Chaput J-P. The ubiquity of the screen: an overview of the risks and benefits of screen time in our modern world. Transl J Am College Sports Med. 2017;2(17):104–13.
Google Scholar
Shen D, Mao W, Liu T, Lin Q, Lu X, Wang Q, et al. Sedentary behavior and incident cancer: a meta-analysis of prospective studies. PloS one. 2014;9(8).
oung DR, Reynolds K, Sidell M, Brar S, Ghai NR, Sternfeld B, et al. Effects of physical activity and sedentary time on the risk of heart failure. Circ Heart Fail. 2014;7(1):21–7.
Petersen CB, Bauman A, Grønbæk M, Helge JW, Thygesen LC, Tolstrup JS. Total sitting time and risk of myocardial infarction, coronary heart disease and all-cause mortality in a prospective cohort of Danish adults. Int J Behav Nutr Phys Act. 2014;11(1):1–11.
Article
Google Scholar
Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451–62.
Article
PubMed
Google Scholar