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Abstract

Background: The evidence showing the ill health effects of prolonged sedentary behaviour (SB) is growing. Most
studies of SB in older adults have relied on self-report measures of SB. However, SB is difficult for older adults to
recall and objective measures that combine accelerometry with inclinometry are now available for more accurately
assessing SB. The aim of this systematic review was to assess the validity and reliability of these accelerometers for
the assessment of SB in older adults.

Methods: EMBASE, PubMed and EBSCOhost databases were searched for articles published up to December 13,
2017. Articles were eligible if they: a) described reliability, calibration or validation studies of SB measurement in
healthy, community-dwelling individuals, b) were published in English, Portuguese or Spanish, and c) were
published or in press as journal articles in peer-reviewed journals.

Results: The review identified 15 studies in 17 papers. Of the included studies, 11 assessed the ActiGraph
accelerometer. Of these, three examined reliability only, seven (in eight papers) examined validity only and one
(in two papers) examined both. The strongest evidence from the studies reviewed is from studies that assessed
the validity of the ActiGraph. These studies indicate that analysis of the data using 60-s epochs and a vertical
magnitude cut-point < 200 cpm or using 30- or 60-s epochs with a machine learning algorithm provides the
most valid estimates of SB. Non-wear algorithms of 90+ consecutive zeros is also suggested for the ActiGraph.

Conclusions: Few studies have examined the reliability and validity of accelerometers for measuring SB in older
adults. Studies to date suggest that the criteria researchers use for classifying an epoch as sedentary instead of as
non-wear time (e.g., the non-wear algorithm used) may need to be different for older adults than for younger
adults. The required number of hours and days of wear for valid estimates of SB in older adults was not clear
from studies to date. More older-adult-specific validation studies of accelerometers are needed, to inform future
guidelines on the appropriate criteria to use for analysis of data from different accelerometer brands.

Trial registration: PROSPERO ID# CRD42017080754 registered December 12, 2017.
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Background
Evidence showing the negative health consequences of
sedentary behaviour continues to grow. ‘Sedentary be-
haviour’ (SB) is any awake behaviour done while sitting,
reclining, or lying down that requires no more than 1.5
metabolic units of energy expenditure [1]. As well as be-
ing associated with psychological distress [2] and poor
physical functioning [3], greater amounts of SB have
been shown to increase risk of cardiovascular disease in-
cidence and mortality, diabetes incidence, cancer inci-
dence and mortality [4], and all-cause mortality [5–9].
Evidence further suggests a dose-response relationship

between subjectively- and objectively-measured SB and
poor health outcomes in older adults [3]. Being the most
sedentary age cohort [10, 11], older adults are at risk of
SB-related diseases. UK researchers found that older
adults spent, on average, 11–12 h/day in SB [12]. Half
the sampled older adults spent 80% of their time in SB.
Similarly, a Canadian study suggested that 94% of older
Canadians spent at least 8 h/day sitting [13]. Both these
studies measured SB objectively with accelerometers.
An international group of experts in SB research con-

cluded in a consensus statement that future SB research
with older adults should provide a better understanding
of the correlates of SB to inform intervention studies
and that interventions that aim to decrease SB should
measure the impact of interventions on SB [14]. Both
types of research require accurate measurement of SB,
and self-report measures have limited utility for asses-
sing total SB [14]. Indeed, a review of 31 international
studies of SB in adults aged ≥60 years found that mean
daily SB time was significantly greater when measured
with accelerometers (9.4 h/day) than self-report mea-
sures (5.3 h/day) [15].
To objectively measure time spent in SB, researchers

often use accelerometers [16], which measure changes
in acceleration. Although accelerometers were built to
measure physical activity, they can indicate low levels
of and the absence of movement. However, since move-
ment is determined by acceleration, not body posture
[17], they cannot distinguish between sitting and stand-
ing still. For this reason, inclinometers (instruments
that measure slope or tilt) have been incorporated into
some newer accelerometers to detect postures and
transitions between postures.
With the addition of inclinometers in accelerometers

studies are being conducted to assess the reliability and
validity of newer models of accelerometers for assessing
SB. Authors of a 2014 systematic review of the use of ac-
celerometers in older adults [18] reported that few accel-
erometer validations studies had been conducted with
older adults [18]. This is an important omission due to
the potential to misclassify as non-wear time the large
proportions of the day that older adults spend sitting

still when standard non-wear algorithms for adults are
used [18]. The non-wear algorithm selected for process-
ing data affects estimates of SB [19] because a long
string of zeros could represent either (a) time that the
monitor was not worn or (b) an extended period in
which the monitor wearer is still. The authors of the re-
view [18], therefore, advocated for older adult-specific
validation studies. Those authors also reported that to
classify SB, accelerometer cut-points ranging from 50 to
500 counts per min (cpm) were being used. The reliabil-
ity and validity of the cut-points were not discussed.
Only one reviewed study included an accelerometer with
an inclinometer. The current study systematically re-
views the current literature on the reliability and validity
of accelerometers with or without inclinometers for
measuring SB in older adults.

Methods
The review was guided by the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA)
statement [20].

Search strategy and study selection
The EMBASE, PubMed and three EBSCOhost databases
(MEDLINE, CINAHL and SPORTDiscus) were searched
for articles published up to December 13, 2017. A three-
step process was used. First, KCH searched titles and
abstracts using the search terms shown in Table 1. The
reference lists of located articles were also searched.
Second, two authors (KCH and RLH) independently

Table 1 Search terms

Behaviour (free terms) Sedentar*
Sitting
Driving
Television
TV
Screen-time
Computer

Measure (free terms) Acceleromet*
ActiGraph
ActivPAL
GENEActiv
Actical
Sensewear
Actiheart
Axivity
Inclinom*
“Motor sensor”
“Activity monitor”

Measurement (free terms) Valid*
Reliab*
Sensitivity
Specificity
Accuracy
Precision

Limits Human
English, Spanish, Portuguese
Aged 65+
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reviewed the titles and abstracts of each located article to
assess its eligibility for inclusion. Disagreements between
reviewers were discussed, and consensus reached about
which articles would be reviewed in the final step, a review
of the full text of articles. For the final step, KCH and
RLH independently reviewed the full text of articles and
came to consensus about articles to include in the review.

Inclusion criteria
As in a previous review of measurement in older adults
[18], the search was limited to older adults (those aged
≥65 years), although samples with mean ages ≥60 years
were included if they were located through the search
strategy. Articles were eligible if they: a) described reli-
ability, calibration or validation studies of SB measure-
ment in healthy, community-dwelling individuals, b)
were published in English, Portuguese or Spanish, and c)
were published or in press as journal articles in peer-
reviewed journals. The reliability and validity of acceler-
ometers in populations living in residential care facilities
or having a specific disease or disability were not in-
cluded. Editorials, reviews, and conference abstracts
were also not included.

Reliability and validity of accelerometers
Reliability of accelerometers refers to the consistency in
accelerometer readings. Most research on reliability of
accelerometers assesses test-retest reliability, which is
typically estimated with the intra-class correlation coeffi-
cient (ICC) for continuous data [21] including acceler-
ometer data.
Validity refers to the extent to which an accelerometer

accurately measures SB. Two types of validity are of inter-
est: criterion and concurrent. Criterion validity refers to
the extent to which the findings from the accelerometer
agree with the findings produced with a ‘gold standard’
measure [22]. For assessing the criterion validity of an ac-
celerometer, the gold standard is typically calorimetry or
direct observation. Concurrent validity refers to the extent
to which findings from an accelerometer agree with the
findings produced from another type of accelerometer
[22]. Because accelerometer counts can be analysed for
varying epoch lengths, validity is analysed for specific
epochs. Assessing validity requires either (a) using an
a-priori cut-point between SB and non-SB behaviours or
(b) assessing a range of cut-points. To assess a range of
cut-points, researchers typically evaluate which ones opti-
mise sensitivity (the % of epochs classified as SB that were
classified by the criterion or concurrent measure as SB)
and specificity (the % of epochs classified as not SB that
were classified by the criterion or concurrent measure as
not SB). The area under the receiver operating character-
istics (ROC) curve is often reported as well. Values closer
to 1.00 indicate more accurate classification of SB, and

values closer to 0.5 indicate less accurate classification
of SB [23]. Statistical models (e.g., non-parametric or
regression models) or Bland–Altman methods [24] may
be used in addition to, or alternatively to, ROC methods,
to examine relationships or agreement between the accel-
erometer of interest and the criterion or concurrent meas-
ure. Additional file 1 contains a more detailed discussion
of reliability and validity.

Data extraction
Extracted from eligible articles were: participant and
monitor characteristics, study setting, methodological
considerations, and results. Extraction tables for the first
six studies reviewed were produced independently by
two authors (NA, KCH) before then being checked for
consistency and accuracy against the original articles by
a third author (RLH). For the remaining studies, KCH
produced the extraction tables, and RLH checked them
for consistency and accuracy against the original articles.

Results
The search identified 550 separate articles (Fig. 1). After
articles out of scope were removed, the full text of 32
articles was examined. After applying the selection cri-
teria, 15 different studies of five accelerometer brands
(Table 2), reported in 17 papers, were included.

Descriptive characteristics of included studies
The ActiGraph accelerometer (ActiGraph LLC, Fort
Walton Beach, FL, USA) was examined in 11 studies [17,
25–36] (see Tables 3 and 4). The most commonly-used
model of ActiGraph was the GT3X+. Studies included be-
tween 20 to 7650 participants, and the mean age of partic-
ipants ranged from 61 to 78 years. Three studies included
only women [27, 28, 30, 33, 34], and the remainder in-
cluded women and men [17, 25, 26, 29, 31, 32, 35, 36].
One study each assessed the Actical, the ActivPAL3,

the GENEActiv, and the MotionWatch 8. These studies
included men and women. The Actical study [37], the
largest of the four, included 200 participants with a
mean age of 64 years. The ActivPAL3 study [38] in-
cluded 53 participants with a mean age of 75 years. The
GENEActiv study [39] included 40 participants with a
mean age of 74 years. Last, the MotionWatch8 study
[40] included 23 adults with a mean age of 70.

Reliability of the ActiGraph
Test-retest reliability of the ActiGraph in free-living con-
ditions was assessed in three studies (Table 3). In each
study, an ActiGraph was worn on the hip, and the data
were analysed in 60-s epochs. In a 21-day study of the
reliability of the ActiGraph 7164, Hart et al. [35] found
that 5 days of measurement was required to attain an ac-
ceptable level of reliability (ICC = 0.80) in measuring SB
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in older adults. SB was defined as vertical axis (VA)
≤50 cpm. In a 7-day study of the ActiGraph 7164 [36],
2- to 3-day protocols provided reliable estimates of the
percentage of time spent in SB, but the authors con-
cluded that estimates should be adjusted for greater time
spent in SB on weekend days than on weekdays. SB was
defined as VA < 100 cpm. In a study of the 2–3 year
test-retest reliability of the ActiGraph GT3X+ [27] with
SB defined as vertical magnitude (VM) < 200 cpm, reli-
ability was slightly lower for daily minutes spent in SB
than seen in the other studies, but excellent given the
long intervals between measurement periods (ICC =
0.75). Overall, these findings provide uncertainly about
the number of days required for reliable estimates of SB.
The two studies that directly addressed the required
number of days were both conducted with the Acti-
Graph 7164, and results could be different in newer
models. Also, differences in data collection periods, cut-
points used to determine SB, non-wear time algorithms,
and axis used to assess SB (one or three) make direct
comparison among studies problematic. Therefore, the
evidence to date does not provide a clear indication of
the number of days of measurement with an ActiGraph
that is required for older adults.
A fourth study [32] assessed the reliability of two fil-

ters that can be used with the ActiGraph GT3X: the nor-
mal filter, which is the standard filter, and the low-
frequency extension (LTE) filter, which was designed to

better capture low-intensity activities. Participants wore
two monitors on a hip for 8 days in free-living condi-
tions. For analysis 60-s epochs were used. The re-
searchers found large mean differences between filters in
min/day and % of time in SB with estimates systematic-
ally lower when the LFE filter was used than when the
normal filter was used. The results were the same when
the VA cut-point for SB was changed from < 150 cpm to
< 100 cpm or < 200 cpm. The results indicate that the
estimates of time spent in SB differ depending on the fil-
ter selected, and therefore, results of studies that use
one type of filter are not comparable to studies that use
the other type.

Validation and accuracy of ActiGraph cut-points for
classifying SB
All validation studies of the ActiGraph assessed the
GT3X+. With the ActivPAL as the concurrent measure,
two 7-day studies showed moderate to good accuracy of
the hip-worn ActiGraph for classifying SB in free-living
conditions [17, 29] (Table 4). Aguilar-Farias et al. [17]
reported that the optimal cut-points for the VA were < 1
count/s, < 10 counts/15 s, and < 25 cpm. The percentage
of correctly classified SB epochs was good (74–80%). For
VM, the optimal cut-points were < 1 count/s, < 70 counts/
15 s, and < 200 cpm. For VA and VM, accuracy was better
for the cpm threshold than for the 1-s and 15-s thresh-
olds. Koster et al. [29] also showed better accuracy for

Fig. 1 PRISM flow chart
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60-s epochs than 15-s epochs: for a 60-s epoch a VA
cut-point of < 22 cpm and a VM cut-point of < 174 cpm
were optimal. These values are slightly lower than
those reported by Aguilar-Farias et al. [17]. The re-
searchers noted that if the commonly-used VA
cut-point of < 100 cpm had been used, there would
have been an overestimation of SB of 114 min/day.
However, the commonly-used VM cut-point of < 200 cpm
produced an overestimate of only 10 mins/day of SB.
Koster et al. [29] also computed optimal SB cut-points

for the wrist-worn GT3X+, and these showed compar-
able accuracy properties to those reported when the
monitor was worn on the hip. The most accurate VM
cut-points were < 2303 cpm on the dominant wrist and
< 1853 on the non-dominant wrist. Their optimal 60-s

epoch cut-points for hip- and wrist-worn monitors pro-
duced more accurate results than the use of their opti-
mal 15-s epoch cut-points.
Using data collected in a laboratory setting, Evenson

et al. [33] computed optimal SB cut-points for the
GT3X+. The criterion measure was portable calorim-
eter. With 15-s epochs, VM was more accurate than
VA for classifying SB, and the LFE filter was not sub-
stantially better than the normal filter. Accuracy was
highest when the sum of sensitivity and specificity
with either a normal filter (optimal cut-point: ≤42
counts/15 s) or LFE filter (optimal cut-point: ≤65
counts/15 s) was maximized. For another analysis of
that study’s data, Bai et al. [34] showed that activity
counts with the normal or LFE filter generally

Table 2 Description of the accelerometers/inclinometers reported in articles included in the systematic review

Brand and model Studies in
which assessed

Placement of
monitor in reviewed
studies

Type of monitor Output available

ActiGraph GT3X+
(ActiGraph LLC, Fort
Walton Beach, FL, USA).

[17, 25–31, 33, 34] Hip, waist,
thigh, ankle,
wrist

Triaxis accelerometer using
piezoresistive and capacitive
technology

Activity counts from acceleration signals in
vector axis only or in vertical magnitude, a
composite measure using the three axes;
raw-mode output allows for post-data
collection filtering [63]. Filtering and choice
of epoch time is done after data collection.
Offers a low-frequency extension (LFE) filter,
designed to better capture low-intensity
activities like sedentary behaviour than the
normal filter.

ActiGraph GT3X
(ActiGraph LLC, Fort
Walton Beach, FL, USA).

[32] Hip, waist,
thigh, ankle,
wrist

Triaxis accelerometer using
piezoresistive and capacitive
technology

Activity counts from acceleration signals in
vector axis only or in vertical magnitude, a
composite measure using the three axes.
Filtering and choice of epoch time must be
set before data collection. Offers a low-
frequency extension (LFE) filter, designed to
better capture low-intensity activities like
sedentary behaviour than the normal filter.

ActiGraph 7164
(ActiGraph LLC, Fort
Walton Beach, FL, USA).

[35, 36] Hip Uniaxis accelerometer using
piezoelectric technology

Activity counts that are filtered, digitized and
full-wave rectified from acceleration signals in
vector axis [63]. Filtering and choice of epoch
time must be set before data collection.

Actical (Mini Mitter
Respironics, Inc., Bend,
OR, USA)

[37] Waist ‘Omni-directional’ accelerometer
using piezoresistive and capacitive
technology; most sensitive to
motion in one plane

Activity counts that are filtered and digitized
from acceleration signals

activPAL (PAL
Technologies Ltd.,
Glasgow, Scotland)

[38] Thigh Uniaxis accelerometer using
capacitive technology

Classifies activities as sitting/lying, standing
or walking

activPAL3 (PAL
Technologies Ltd.,
Glasgow, Scotland)

[38] Thigh Triaxis accelerometer using
capacitive technology

Classifies activities as sitting/lying, standing
or walking

GENEActiv
(Activinsights Ltd.,
Kimbolton, UK)

[39] Thigh Triaxis accelerometer with a
near-body temperature sensor

Raw-mode data allows for open-source
post-data collection filtering

MotionWatch8
(CamNtech,
Cambridge, UK)

[40] Wrist Triaxis accelerometer using MEMs
technology, with ambient light
sensor

Activity counts from acceleration signals in
a single axis only or in vertical magnitude
using epoch-based recoding that uses the
three axis; raw-mode data allows for
post-data collection filtering

Note: Triaxial accelerometers measure acceleration in vertical axis, antero-posterior and medio-lateral
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Table 3 Characteristics and results of studies that examined reliability of ActiGraph models for measuring sedentary behaviour in
older adults (mean age ≥ 60 years), ordered from largest to smallest sample size

Study Participants and data source Monitor and epochs
analysed

Methods Results for Sedentary Behaviour

Kocherginsky,
et al., 2016 [36]

n = 2208
57% female (weighted)
Mean age = 74.2 y
(95% CI 73.7–74.7)
USA: Data collected for
National Health and Nutrition
Examination Survey (NHANES)

ActiGraph 7164
Worn on right hip
60-s epochs

Free-living
Activities: VA < 100 cpm
Observation period: 7 consecutive
days during waking hours
Valid hours and days: ≥10 h; ≥1 day
Non-wear algorithm: 60 min of
consecutive zeros, no allowance
for interruptions
Analysis: used linear regression to
examine variations across days of
the week; computed Lin’s
concordance coefficients to
compare 2-day and then 3-day
averages to 7-day average among
participants with 7 valid days of data

Average daily percent of time
spent in SB
Monday to Friday: 65.3–65.9%
Saturday: 66.3%
Sunday: 69.6%
Difference between Sunday and
Monday to Saturday was significant
(p < 0.001).
Difference between Saturday and
Monday to Friday was significant
(p = 0.045).
Comparison of % time spent in SB
between 2 & 3 day averages with
7-day average
Lin’s concordance r:
For 2-day vs 7-day: 0.91
For 3-day vs 7-day: 0.94

Keadle et al.
(2017) [27]

n: 209
Only females
Mean age: 70.6 ± 5.7 y
USA: Data collected for an
observational ancillary study
of participants from the
Women’s Health Study, a
randomized trial of aspirin and
vitamin E to reduce risk of
cardiovascular disease and
cancer. Data collected after
completion of the trial.

ActiGraph GT3X+
Worn on hip
60-s epochs

Free-living
Activities: VM < 200 cpm
Observation period: two to three
7-day periods over 2–3 y during
waking hours
Valid hours and days: ≥10 h; ≥4 day
Non-wear algorithm: Choi algorithm
[61] and≥ 600 min/day
Analysis: computed reproducibility
of sitting time across time periods
ICCs; used linear mixed models;
assessed utility of one 7-day
assessment for classifying 2–3 year
behaviour by cross-classifying
participants using the baseline
quartile distribution for SB and the
quartile distribution
of the average of two follow
up assessments

ICCs (95% CI) over 2–3 years
All participants: 0.75 (0.69, 0.80)
Younger: 0.74 (0.66, 0.81)
Older: 0.74 (0.65, 0.81)
Normal weight: 0.73 (0.65, 0.80)
Overweight: 0.76 (0.68, 0.83)
Less active: 0.75 (0.67, 0.82)
More active: 0.64 (0.54, 0.73)
Percent agreement in
classification of SB into same
quartile at baseline and average
of follow-up assessments: 50 and 7%
misclassified by ≥2 quartiles

Wanner et al.,
2013 [32]

n = 65
32 males, 33 females (50.8%)
Mean age = 60.8 ± 9.9 y
Switzerland: Data collected for
ancillary study of the Swiss
Cohort Study on Air Pollution
and Long and Heart Disease
in Adults, after completion of
the main study.

ActiGraph GT3X
Two worn on
right hip
60-s epochs

Free-living
Activities: VA < 150 cpm, < 100
cpm and < 200 cpm
Observation period: 8 consecutive days
Valid hours and days: not reported
Non-wear algorithm: 60 min of
consecutive zeros, no allowance
for interruptions
Analysis: compared normal filter to
low-frequency extension (LTE)
filter using Spearman correlations,
Wilcoxon rank sum tests, scatter
plots, and Bland–Altman plots; used
linear regression to compute
correction factors in half the sample
and re-analyse results using
correction factor

NORMAL VS LTE FILTER FOR
VA < 150 CPM
Non-wear time
Spearman r: 0.97
Mean difference: 8.9 ± 13.3; 1.5% ±
2.2%, p < 0.001
Sedentary time (min/day)
Spearman r: 0.96
Mean difference: 25.7 ± 17.6; 4.5% ±
3.1%, p < 0.001
Other findings
Results for mean differences did not
change if cut-point changed to < 100
or < 200 cpm for SB.
Plots showed non-wear time and SB
time were systematically lower for
low-frequency extension vs
normal filter.
CORRECTION FACTOR FOR LFE FILTER
FOR VA < 150 CPM
Nonwear min/day: 2.996 + (1.01 x
nonwear time from LFE)
Sedentary min/day: 62.74 + (0.93 x
sedentary time from LFE)
COMPARE NORMAL VS LTE USING
CORRECTION FACTORS FOR VA <
150 CPM
Non-wear time:
Mean difference: − 0.8 ± 9.1;
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performed poorly against portable calorimeter in dif-
ferentiating between SB and two light activities.
These findings suggest that for using ActiGraph GT3X

+ worn at the hip, 60-s epochs and VM provide more
accurate estimates of SB than shorter epochs or VA, re-
spectively. The findings from the studies in free-living
conditions suggest that VM < 200 cpm provides valid es-
timates of SB time. However, if VA is used, the cut-point
should be much smaller than typically used (e.g., < 22–
25 cpm). One study also provided VM cut-points for
ActiGraph GT3X+ worn on the wrist. Moreover, find-
ings suggest that the use of LFE does not substantially
improve the estimates of SB time produced with a
normal filter although caution is warranted in ex-
trapolating the laboratory-based findings to free-living
conditions.

Validity and accuracy of machine learning algorithms for
classifying SB with the ActiGraph
Three studies assessed whether machine learning
algorithms accurately classify SB (Table 4). In a study by
Rosenberg et al. [30] participants wore a camera on a
lanyard around their necks while wearing the ActiGraph
on a hip for 7 days in free-living conditions. Epochs were
set to 60 s. The researchers showed that a machine learn-
ing algorithm using ActiGraph output could more accur-
ately differentiate SB from non-sedentary behaviours than
other methods. The researchers also reported that the me-
dian counts for sitting were much lower than would be
detected by a < 100 cpm threshold and the median counts
for riding in a vehicle were higher than would be detected
at that threshold. This finding further supported the su-
periority of the algorithm over the use of a set cut-point.

Sasaki et al. [31] compared two machine learning algo-
rithms for classifying activities and examined whether
algorithms created in laboratory conditions were as accur-
ate as those created in free-living conditions for detecting
SB in free-living conditions. Direct observation was the
criterion measure for both conditions. Using 20-s epochs
for ActiGraphs worn on the hip, wrists and ankle, the
laboratory-based algorithms were not as accurate as ones
developed in free-living conditions (over 2–3 h, % of mi-
nutes correctly classified as SB was > 80% except for one
wrist-worn algorithm). For algorithms produced under
free-living conditions, the researchers showed that the ac-
curacy in correctly classifying minutes as SB was optimal
(defined as 80% of minutes correctly classified as SB)
when the ActiGraph was placed at the hip or ankle (not
wrist) and 15- or 30-s epochs were used. The highest over-
all classification rates were for 30-s epochs.
These machine-learning algorithms performed substan-

tially better than an algorithm developed for another study
[25]. As in the study by Sasaki et al. [31], direct observa-
tion was the criterion measure for both laboratory-based
and free-living conditions, which were conducted in ses-
sions lasting less than 1 day. Epochs were set to 5 s, which
the findings by Sasaki [31] suggest is not as accurate as
using longer epoch lengths. Also, data from laboratory-
based and free-living components of the study were com-
bined for analysis, which could have negatively impacted
the findings, given that Sasaki [31] found differences in
accuracy between laboratory-based versus free-living
algorithms.
Overall, these findings indicate that machine learn-

ing algorithms may provide more accurate estimates
than cut-points, particularly when these algorithms

Table 3 Characteristics and results of studies that examined reliability of ActiGraph models for measuring sedentary behaviour in
older adults (mean age ≥ 60 years), ordered from largest to smallest sample size (Continued)

Study Participants and data source Monitor and epochs
analysed

Methods Results for Sedentary Behaviour

− 0.2% ± 1.5, p = 0.30
Sedentary time (min/day):
Mean difference: 0.1 ± 15.6;
− 0.1% ± 2.7%, p = 0.72

Hart et al.,
2011 [35]

n = 52
13 males; 39 females
Mean age: 69.3 ± 7.4 y
USA: Data collected from
participants of larger
ongoing study of physical
activity patterns.

ActiGraph 7164
Worn on right waist
60-s epochs

Free-living
Activities: VA ≤50 cpm
Observation period: 21 consecutive
days during all waking hours
Valid hours and days: not reported
Non-wear algorithm: 60 min of
consecutive zeros, no allowance
for interruptions
Analysis: computed reproducibility of
sitting time using Spearman-Brown
Prophecy Formulas based on ICC;
computed RMANOVA to examine
differences between days of the week

Number of days of measurement
required for:
ICC = 0.80: 5 days
ICC = 0.85: 7 days
ICC = 0.90: 11 days
ICC = 0.95: 21 days
No significant differences between
days of week in time spent in SB
(p = 0.48)

Abbreviations: cpm Counts per minute, IQR Inter-quartile range, ICC Intraclass correlation coefficient; valid hours and days: for free-living studies lasting at least
7 days, number of hours per day and days during observation period that were required for data to be included in analysis; VA Vertical axis, VM Vector
magnitude, m Minutes, s Seconds, h Hours, y Years
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Table 4 Characteristics and results of studies that examined validity and accuracy of ActiGraphs for measuring sedentary behaviour
in older community-dwelling, healthy adults (mean age ≥ 60 years), ordered from largest to smallest sample size

Study Participants Monitor and epochs
analysed

Methods Results for sedentary behaviour

Keadle
et al.
(2014) [28]

n: 7650
Only females
Mean age: 71.4 ± 5.8 y
USA: Data collected for an ancillary
study of participants from the
Women’s Health Study, a
randomized trial of aspirin and
vitamin E to reduce risk of
cardiovascular disease and cancer.
Data collected after completion of
the trial.

ActiGraph GT3X+
Worn on hip
60-s epochs

Free-living
Activities: activities with VA
< 100 cpm and VM < 200 cpm
Criterion: paper logs
Observation period: 7 consecutive days
during waking hours
Valid hours and days: ≥10 h, ≥1 day
and≥ 4 days
Non-wear algorithm: Troiano et al. [62]
and Choi et al. [61]
Analysis: computed min/day of
sedentary activities and used Wilcoxon
signed rank sum test to compare
output between VA and VM

VA: min/day (95% CI)
Log+Troiano et al. algorithm:
530.1 (480.1, 578.6)
Log+Choi et al. algorithm: 581.6
(521.1, 639.8)
VM: min/day (95% CI)
Log+Troiano et al. algorithm:
474.6 (417.0, 529.6)
Log+Choi et al. algorithm: 506.0
(439.2, 570.9)
Differences between VA and VM
were significant (p < 0.001)
Using dates from logs combined
with Choi algorithm minimalised
missing data and researcher
burden. Using algorithm only
resulted in misclassification of
days when accelerometers
were being posted to
participants as accelerometer
wear days.

Evenson
et al.
(2015) [33]

n: 200
Females only
Mean age = 75.5 ± 7.7 y
USA: Data collected for a calibration
sub-study of participants from the
Women’s Health Initiative Long Life
Study. Data collected after
completion of main study.

ActiGraph GT3X+
Worn on hip
15-s epochs

Laboratory-based
Activities: sitting, watching DVD; sitting
assembling a puzzle
Criterion measure: portable calorimeter
Observation period: 7 min per activity
Analysis: computed Spearman
correlation using normal and low
frequency extension for ActiGraph; used
ROC analysis to determine optimal cut-
points; computed AUC, sensitivity and
specificity for normal and low-frequency
extension filter

MAXIMISING SUM OF SENSITIVITY
+SPECIFICITY
VA: Normal filter
Optimal: 0 counts/15 s
AUC: 0.73; Sensitivity: 91%;
Specificity: 62%
VA: Low-frequency extension
filter
Optimal: 0 counts/15 s
AUC: 0.79; Sensitivity: 79%;
Specificity: 81%
VM: Normal filter
Optimal: ≤42 counts/15 s
AUC: 0.88; Sensitivity: 87%;
Specificity: 80%
VM: Low-frequency extension
filter
Optimal: ≤65 counts/15 s
AUC: 0.90; Sensitivity: 87%;
Specificity: 81%
BALANCING NUMBER OF FALSE
POSITIVES AND FALSE NEGATIVES
VA: Normal filter
Optimal: 0 counts/15 s
AUC: 0.73; Sensitivity: 91%;
Specificity: 62%
VA: Low-frequency extension
filter
Optimal: 0 counts/15 s
AUC: 0.79; Sensitivity: 79%;
Specificity: 81%
VM: Normal filter
Optimal: ≤12 counts/15 s
AUC: 0.88; Sensitivity: 76%;
Specificity: 88%
VM: Low-frequency extension
filter
Optimal: ≤31 counts/15 s
AUC: 0.90; Sensitivity: 71%;
Specificity: 88%

Bai et al.
(2016) [34]

n: 194
Females only
Mean age = 75.4 ± 7.7 y
USA: Data collected for a calibration

ActiGraph GT3X+
Worn on hip
1-s epochs

Laboratory-based
Activities: sitting, watching DVD; sitting
assembling a puzzle
Criterion measure: portable calorimeter

Compare watching DVD vs
washing dishes or doing laundry,
respectively
Activity index: AUC: 0.98, 0.98
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Table 4 Characteristics and results of studies that examined validity and accuracy of ActiGraphs for measuring sedentary behaviour
in older community-dwelling, healthy adults (mean age ≥ 60 years), ordered from largest to smallest sample size (Continued)

Study Participants Monitor and epochs
analysed

Methods Results for sedentary behaviour

sub-study of participants from the
Women’s Health Initiative Long Life
Study. Data collected after
completion of main study.

Observation period: 7 min per activity
Analysis: used ROC analysis to compare
an activity index created for this study
with activity count using the normal
filter and LFE, and another method of
summarise raw data, the Euclidean
Norm Minus One (ENMO); computed
AUC also to compare these measures
on predicting energy expenditure
greater than SB

Activity count (normal filter):
AUC: 0.39, 0.74
Activity count (LTF): AUC: 0.27,
0.87
ENMO: AUC: 0.40, 0.69
Predicting whether MET is < or
≥ 1.5 MET
Activity index: AUC: 0.96
Activity count (normal filter):
AUC: 0.86
Activity count (LFE): AUC: 0.91
ENMO: AUC: 0.85

Chudyk
et al.,
2017 [26]

n: 106
39 men and 76 women
Mean age = 74.1 ± 6.4 y
Canada: Data collected for Walk the
Talk: Transforming the Built
Environment to Enhance Mobility
in Seniors, a cross-sectional study
of older adults living on low
incomes. A random stratified
design based on neighbourhood
walkability was used to recruit
older adults who received a
provincial government rental
subsidy.

ActiGraph GT3X+
Worn on right hip
60-s epochs

Free-living
Activities: VA < 100 cpm
Criterion: paper log
Observation period: 7 days during
waking hours
Valid hours and days: ≥8 h; ≥4 days
Non-wear algorithms:
1. ≥60 min of continuous zeroes;
allow for up to 2 min of counts ≤100
counts as non-wear time [62]
2. ≥90 min of consecutive zeroes;
allow for up to 2 min of non-zero
counts if the interruption was
accompanied by 30 consecutive min
of 0 counts upstream or downstream [61].
3. ≥90 min of continuous zeroes; no
allow for interruptions, as non-wear
time
4. ≥90 min of continuous zeroes;
allow for up to 2 min of counts≤50
counts as non-wear time
5. ≥90 min of continuous zeroes,
while allowing for up to 2 min of
counts ≤100 counts as non-wear time
Analysis: used Bland Altman methods
to compare logs to non-wear time
algorithms

COMPARISON OF EACH
ALGORITHM TO LOGS
Mean differences in SB min/day
between log and ActiGraph
(95% CI)
1. 37.5 (25.7, 49.3)
2. 5.8 (− 4.4, 16.0)
3. − 4.4 (− 14.6, 5.8)
4. 5.5 (− 4.9, 15.9)
5. 8.1 (− 2.3, 18.5)
95% limits of agreement
between log and ActiGraph for
wear-time
1. − 84.6, 159.6
2. − 100.2, 111.8
3. − 110.5, 101.8
4. − 103.0, 114.0
5. − 100.2, 116.4

Koster
et al.,
2016 [29]

n: 62
26 males, 36 females
(58.1% females)
Mean age = 78.4 ± 5.7 y
USA: Data collected for a
methodological sub-study of
the Developmental Epidemiologic
Cohort Study

ActiGraph GT3X+
Worn on hip, right
wrist and left wrist
concurrently 15-s
and 60-s epochs

Free-living
Activities: sitting, lying
Concurrent measure: ActivPAL worn
on right thigh
Observation period: 7 full days, with
permission given for removal at night
Valid hours and days: ≥10 h; ≥1 day
Non-wear algorithm: Choi et al. [61]
Analysis: for each monitor, used ROC
to determine optimal cut-points;
computed AUC, sensitivity, specificity,
and kappa statistic

STANDARD CUT-OFF POINTS
FOR 60-SEC EPOCHS
VA < 100 cpm:
Sensitivity: 94%; Specificity: 58%;
kappa: 0.55
Mean difference: − 114.3 min/day
(95%CI -140.5, − 88.1)
VM < 200 cpm:
Sensitivity: 88%; Specificity: 79%;
kappa: 0.68
Mean difference: − 9.9 min/day
(95%CI -32.8, 13.0)
OPTIMAL 60-SEC EPOCHS
Hip-worn ActiGraph
VA < 22 cpm:
AUC: 0.85; Sensitivity: 85%;
Specificity: 74%; kappa: 0.59
Mean difference: − 5.0 min/day
(95%CI -29.5, 19.5)
VM < 174 cpm:
AUC: 0.89; Sensitivity: 87%;
Specificity: 80%; kappa: 0.67
Mean difference: 2.5 min/day
(95%CI -20.4, 25.5)
Wrist-worn ActiGraph
VM < 2303 cpm (dominant wrist):
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Table 4 Characteristics and results of studies that examined validity and accuracy of ActiGraphs for measuring sedentary behaviour
in older community-dwelling, healthy adults (mean age ≥ 60 years), ordered from largest to smallest sample size (Continued)

Study Participants Monitor and epochs
analysed

Methods Results for sedentary behaviour

AUC: 0.86; Sensitivity: 81%;
Specificity: 78%; kappa: 0.58
Mean difference: 30.2 min/day
(95% CI 10.7, 49.6)
VM < 1853 cpm (non-dominant
wrist):
AUC: 0.86; Sensitivity: 82%;
Specificity: 77%; kappa: 0.57
Mean difference: 22.6 min/day
(95%CI 0.5, 44.6)
OPTIMAL 15-S EPOCHS
Hip-worn ActiGraph
VA < 1 count/15 s:
AUC: 0.75; Sensitivity: 87%;
Specificity: 61%; kappa: 0.50
Mean difference: − 53.4 min/day
(95%CI -76.4, − 30.4)
VM < 20 counts/15 s:
AUC: 0.83; Sensitivity: 83%;
Specificity: 73%; kappa: 0.56
Mean difference: 12.8 min/day
(95%CI -8.8, 34.4)
Wrist-worn ActiGraph
VM < 517 counts/15 s
(dominant wrist):
AUC: 0.81; Sensitivity: 75%;
Specificity: 75%; kappa: 0.48
Mean difference: 64.7 min/day
(95%CI 45.7, 83.7)
VM < 376 counts/15 s (non-
dominant wrist):
AUC: 0.81; Sensitivity: 75%;
Specificity: 74%; kappa: 0.47
Mean difference: 64.7 min/day
(95%CI 44.3, 85.0)

Rosenberg
et al.
(2017) [30]

n: 39
Only females
Mean age = 69.4 (range: 56–94)
USA: A convenience sample

ActiGraph GT3X+
Worn on right hip
60-s epochs

Free-living
Activities: sitting and riding in a vehicle
Criterion: DO (images produced via
SenseCam camera worn on lanyard
around neck)
Observation period: 7 days during
waking hours
Valid hours and days: not reported
Non-wear algorithms: Choi et al. [61]
Analysis: used machine learning
algorithm to classify activities (sitting
and riding in vehicle analysed
separately), computed sensitivity and
specificity

Sitting
Sensitivity: 89%; Specificity: 91%
Median counts = 0 (IQR: 0, 17),
indicating that sitting occurred at
a lower intensity than would be
detected by existing threshold
of < 100 cpm
Riding in a vehicle
Sensitivity: 84%; Specificity: 99%
Median counts = 72 (IQR: 21, 177),
indicating that riding occurred at
a higher intensity than would be
detected by threshold of
< 100 cpm

Aguilar-
Farias et al.
(2014) [17]

n: 37
13 males, 24 females
(64.9% female)
Mean age: 73.5 ± 7.3 y
Australia: A convenience sample
recruited mainly via flyers displayed
at senior centres and exercise
centres, and emails to university
staff

ActiGraph GT3X+
Worn on right hip
1-s, 15-s, 60-s
epochs

Free-living
Activities: sedentary activities defined as
VM and VT counts being below cut-
points set separately for 1-s, 15-s and
1-m epochs as follows: 1-s (< 1 to < 10
in increments of 1 counts/s), 15-s (< 1
to < 100 in increments of 5 counts/
15 s) and 60-s epochs (< 1 to < 400 in
increments of 25 cpm)
Concurrent measure: ActivPAL3™ worn
on right thigh
Observation period: 7 consecutive days
during waking hours
Valid hours and days: ≥10 h; ≥5 days
Non-wear algorithms: 90-min of
consecutive zeros with no interruptions

OPTIMAL CUT-POINTS FOR VA
< 1 count/s
AUC:0.67; Sensitivity:92%;
Specificity:43%
Correctly classified: 74%
Mean bias:156.61 (95%LoA: −
34.5, 347.7)
< 10 counts/15 s
AUC:0.70; Sensitivity:84%;
Specificity:65%
Correctly classified: 79%
Mean bias: − 4.29 (95%LoA: −
141.3, 132.8)
< 25 cpm
AUC:0.79; Sensitivity:83%;
Specificity:75%
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Table 4 Characteristics and results of studies that examined validity and accuracy of ActiGraphs for measuring sedentary behaviour
in older community-dwelling, healthy adults (mean age ≥ 60 years), ordered from largest to smallest sample size (Continued)

Study Participants Monitor and epochs
analysed

Methods Results for sedentary behaviour

allowed
Analysis: used ROC to determine
optimal cut-points, calculated AUC and
computed sensitivity, specificity,
percent correctly classified, mean bias
(min/day)

Correctly classified: 80%
Mean bias:4.81 (95%LoA: −
157.2, 166.8)
OPTIMAL CUT-POINTS FOR VM
< 1 count/s
AUC:0.73; Sensitivity:85%;
Specificity:62%
Correctly classified: 76%
Mean bias: 0.98 (95%LoA: −
113.4, 15.4)
< 70 counts/15 s
AUC:0.79; Sensitivity:87%;
Specificity:70%
Correctly classified: 82%
Mean bias:0.80 (95%LoA: − 188.5,
120.1)
< 200 cpm
AUC:0.84; Sensitivity:89%;
Specificity:79%
Correctly classified: 85%
Mean bias:18.05 (95%LoA: − 107.2,
143.3)

Sasaki,
2016
[31]

n = 35
14 males; 21 females
Mean age: 70.8 ± 4.9 y
USA: A convenience sample

ActiGraph GT3X+
Worn on dominant
hip, wrist and ankle
20-s epochs

LABORATORY-BASED
Activities and observation period:
performed sitting and lying down
postures (30 s each); sat doing
crossword puzzles or playing cards
(5 min)
Criterion measure: DO
FREE-LIVING (N = 15)
Activity: SB
Criterion measure: DO (trained observers
coded activities with continuous focal
sampling software in a personal digital
assistant)
Observation period: 2–3 h
Analysis: output used to train random
forest (RF) and support vector machine
(SVM) algorithms to classify activities;
different algorithms developed for
different body placement of monitor;
computed percent correct classification

% CORRECT CLASSIFICATION AS SB
Lab-based algorithms applied to
lab and free-living conditions:
using 20-s epochs
SVM hip: Lab: 92%; Free: 68%
SVM wrist: Lab: 97%; Free: 73%
SVM ankle: Lab: 92%; Free: 79%
RF hip: Lab: 92%; Free: 62%
RF wrist: Lab: 93%; Free: 71%
RF ankle: Lab: 89%; Free: 76%
Free-living-based algorithms
applied to free-living conditions:
using 20-s epochs
SVM hip: Free: 82%
SVM wrist: Free: 75%
SVM ankle: Free: 87%
RF hip: Free: 81%
RF wrist: Free: 81%
RF ankle: Free: 84%
Free-living-based algorithms
applied to free-living conditions:
using other epochs
5-s epochs:
hip: 79%; wrist: 70%; ankle: 78%
10-s epochs:
hip: 82%; wrist: 74%; ankle: 82%
15-s epochs:
hip: 82%; wrist: 75%; ankle: 87%
30-s epochs:
hip: 82%; wrist: 78%; ankle: 87%
RF ALGORITHMS
5-s epochs:
hip: 72%; wrist:73%; ankle: 75%
10-s epochs:
hip: 77%; wrist: 77%; ankle: 81%
15-s epochs:
hip: 81%; wrist: 81%; ankle: 84%
30-s epochs:
hip: 83%; wrist: 84%; ankle: 86%
FREE-LIVING FOR HIGHEST
OVERALL CLASSIFICATION RATES
ACROSS ANKLE, HIP and WRIST
ALGORITHMS, AT 30-S EPOCHS
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use large epochs, 30-s and 60-s, with data from
free-living conditions.

Validity and reliability of other brands of accelerometers
Three other monitors underwent testing in laborator-
ies: the activPAL3, GENEActiv, and MotionWatch 8
(Table 5). Klenk et al. [38] compared the newer activ-
PAL3 to the original activPAL. Both were worn on
the thigh. The researchers reported high agreement
(98%) between monitors, but for a 24-h period, the
researchers calculated, between monitors, a mean dif-
ference of 45 min in time spent sitting/lying. The
findings suggest that the two monitors should not be
used interchangeably for assessing SB. In the second
study, Wullems et al. [39] validated the GENEActiv,
worn on the thigh, against indirect calorimetry. Three
cut-point algorithms and one machine learning algo-
rithm performed well at classifying SB. In the final
study, Landry [40] conducted the first validation of
the MotionWatch 8. In that study, participants wore
two watches on non-dominant wrists while perform-
ing SB and other activities. The watch was validated
against portable calorimeter. The optimal cut-point
for SB was ≤179 cpm.
These early validity assessments indicate that the

newest models of non-ActiGraph monitor brands
show promise for classifying SB in older adults. Fu-
ture studies in free-living conditions are needed to
verify whether these findings hold in real-life
conditions.

Accuracy of non-wear time algorithms for classifying SB
Two studies [26, 28] examined the influence of the non-
wear-time algorithm selected on the classification of SB
(Table 4). Both studies used the ActiGraph GT3X+,
worn on the hip during free-living conditions, for 7 days.
Both studies used 60-s epochs and defined SB as VA <
100 cpm with one study [28] also requiring VM <
200 cpm. For determining non-wear time Keadle et al.
[28] found that the use of a paper log with the Choi al-
gorithm [41] was better than using this algorithm only
or using another algorithm with our without a log, for
minimising missing data. The algorithms examined used
≥60 min threshold. Dates on logs were needed because
accelerometers were mailed to participants. Without a
log of wear-time dates, the algorithm misclassified ‘wear’
days as ‘in the mail’ days. Chudyk et al. [26] showed that
algorithms that counted ≥90 min of consecutive zeroes
as non-wear time were more accurate in estimating SB
compared with ones using a ≥ 60 min threshold.
In contrast, Hutto et al. [37] examined the accuracy of

the wrist-worn Actical in producing estimates of SB
across non-wear estimation algorithms (see Table 5).
Participants worn the monitor for 7 days and kept
wear-time logs. SB was defined as VA ≤100 cpm. The
analysis showed that estimates of time spent in SB
were similar among algorithms that counted
≥120 min of consecutive zeros as non-wear time
(with no allowance for intervals of non-zero cpm).
Using 60- or 90-min intervals produced underestima-
tions of time in SB.

Table 4 Characteristics and results of studies that examined validity and accuracy of ActiGraphs for measuring sedentary behaviour
in older community-dwelling, healthy adults (mean age ≥ 60 years), ordered from largest to smallest sample size (Continued)

Study Participants Monitor and epochs
analysed

Methods Results for sedentary behaviour

Sensitivity and specificity:
Ankle (SVM): 82%; 94%
Hip (RF): 79%; 93%
Wrist (RF): 69%; 92%

Bourke
et al.,
2016 [25]

n: 20% females not provided
Mean age = 76.4 ± 5.6 y
Norway: A convenience sample

ActiGraph GT3X+
Worn on right hip
5-s epochs

LABORATORY-BASED
Activities: semi-structured protocol that
included sitting and lying
Criterion measure: DO (video camera)
Observation period: in one session
FREE-LIVING
Activities: sitting and lying as part
of tasks requested by researchers +
normal routine
Criterion measure: DO (camera on head)
Observation period: partial day
Analysis: used laboratory-based and
free-living data together to assess %
correctly classified using researcher-
developed algorithm

Across both conditions % correct
classification:
Sitting: 75%
Lying: 51%

Abbreviations: AUC Area under the ROC curve that is used to evaluate classification accuracy, cpm Counts per minute, IQR Inter-quartile range, ICC Intraclass
correlation coefficient, LoA Low-frequency extension filter, LTE Limit of Agreement, PPV Positive predictive value, ROC Receiver operator characteristic analysis;
valid hours and days: for free-living studies lasting at least 7 days, number of hours per day and days during observation period that were required for data to be
included in analysis;VA Vertical axis, VM Vector magnitude, m Minutes, s Seconds, h Hours, y Years
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In summary, for the ActiGraph, it is not clear whether
treating ≥60 min or ≥ 90 min of consecutive zeroes as
missing data is best for accurately classifying SB, but

findings from the only study that compared the two in-
dicated that the ≥90 min is optimal. For the Actical, ini-
tial findings indicate that non-wear time should include

Table 5 Characteristics and results of studies that examined validity and accuracy of other accelerometers and inclinometers for
measuring sedentary behaviour in older community-dwelling, healthy adults (mean age ≥ 60 years), ordered from largest to smallest
sample size

Study Participants Monitor and
epochs analysed

Methods Results for Sedentary
Behaviour

Hutto,
et al.,
2013 [37]

n: 200
85 males, 115 females (58% female)
Mean age = 63.5 ± 8.3
USA: Data collected as subs-tudy of
The Reasons for Geographic and
Racial Differences in Stroke Study,
a national cohort study of racial
and regional disparities in stroke
risk and mortality

Actical
Worn on waist
60-s epochs

Free-living
Activities: VA ≤100 cpm
Concurrent measure: wear-time logs
Observation period: 7 consecutive
days during waking hours
Valid hours and days: ≥10 h; ≥4 days
Non-wear algorithms: 60-, 90-, 120-,
150-, and 180-min of consecutive
zeros, no allowance for interruptions
Analysis: compared algorithms for
estimating wear and non-wear time
by computing min/day and % of
total wear time in SB for each algorithm

ALGORITHMS USING THE
FOLLOWING MINUTES OF
CONSECUTIVE ZEROES TO
MEASURE NON-WEAR TIME
Min/day were classified
as SB
60-min: 618 ± 81
90-min: 649 ± 88
120-min: 667 ± 97
150-min: 675 ± 98
180-min: 679 ± 101
% of total wear time was SB
60-min: 75 ± 10
90-min: 77 ± 10
120-min: 77 ± 10
150-min: 77 ± 10
180-min: 77 ± 10

Klenk
et al.
(2016) [38]

n: 53
31 males and 22 females (41.5%
female)
Mean age: 75.3 ± 4.6 y
Germany: Data collected as sub-
study of ActiFE-Ulm study, a
national cohort study of physical
activity and health outcomes

ActivPAL3
Worn on left
thigh

Laboratory-based
Activities: 2 bouts of sitting; 2 bouts of lying
Concurrent measure: ActivPAL worn on left
thigh concurrently
Observation period: 10 s per bout of activity
with a total observation period of mean
156.5 min ± 16.5
Analysis: computed agreement between the
2 monitors by (1) using Bland Altman
methods and (2) computing for the activPAL
sitting/lying category the degree to which
activPAL3™ identified sitting/lying or different
activities

Mean difference: − 2.00 s
(±2 SD: 3.52)
Median agreement: 98.0%
(IQR 95.9–99.0)
Expected difference in SB
duration (95% CI) for 24-h
measurement: − 44.5 min
(− 69.9, − 20.0)

Wullems
et al.
(2017) [39]

n: 40
20 males, 20 females (50.0% female)
Mean age = 73.5 ± 6.3 y
UK: Convenience sample

2 GENEActiv
Worn on thigh

Laboratory-based
Activities: sitting in a chair; lying down
Observation period: 4 min per activity
Criterion: indirect calorimeter
Analysis: compared machine learning
algorithm to three cut-point algorithms
for classifying intensities of activities
(if MET value ≤1.5 and position was
not upright), computed sensitivity
and specificity

3 methods using cut-point
algorithms
Sensitivity: 99.3–99.9%
Specificity: 99.7%
Accuracy: 99.5–99.8%
Random Forest machine
learning
Sensitivity: 99.9%
Specificity: 99.2%
Accuracy: 99.6%
Other findings: Participant-
specific accuracies resulted
in perfect score (100%) for
all algorithms for SB.

Landry
et al.,
2015 [40]

n: 23
7 males and 16 females (69.6% female)
Mean age: 70.0 ± 6.6 y
Canada: Convenience sample recruited
through newspaper advertisements,
brochures distributed at community
centres, and word of mouth

MotionWatch 8
Two worn on
non-dominant wrist
60-s epochs

Laboratory-based
Activities: sitting in a chair; lying down
Criterion: portable calorimeter
Observation period: 5-min per activity
Analysis: used ROC to determine optimal
cut-points with SB defined as < 1.5 MET,
computed AUC, sensitivity, specificity,
PPV, negative predicted value

AUC: 0.81 (95%CI: 0.78, 0.85)
Optimal cut-point for SB:
≤178.5 (d2 = 0.14)
Sensitivity: 78%
Specificity: 70%
Accuracy: 70%
PPV: 30%
Negative predictive
value: 94%

Abbreviations: AUC Area under the ROC curve that is used to evaluate classification accuracy, cpm Counts per minute, IQR Inter-quartile range, ICC Intraclass
correlation coefficient, LoA Low-frequency extension filter, LTE Limit of Agreement, PPV Positive predictive value, ROC Receiver operator characteristic analysis, SD
Standard deviation; valid hours and days: for free-living studies lasting at least 7 days, number of hours per day and days during observation period that were
required for data to be included in analysis; VA Vertical axis, VM Vector magnitude, m Minutes, s Seconds, h Hours, y Years
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a longer string of consecutive zeros (e.g., ≥120 min of
consecutive zeros).

Discussion
Accurate measurement of SB is critical for the evaluation
of patterning and prevalence of this behaviour and of fu-
ture health promotion strategies aimed at decreasing SB.
The aim of this systematic review was to assess the
validity and reliability of accelerometers for the as-
sessment of SB in older adults. Fifteen eligible stud-
ies were identified.
Comparison among studies of older adults in this field

is challenging due to the heterogeneous assumptions used
for the measurement parameters. For example, studies
varied greatly in what constituted a valid day, number of
measurement days, epoch length, use of VA or VM, and
cut-point thresholds. Validity was assessed predominately
using the ActiGraph GT3X+. Reliability was assessed
using the ActiGraph GT3X+ and 7164. Most studies used
accelerometers worn on the hip and utilized 60-s epochs.
Test-retest reliability estimates of the ActiGraph 7146

were similar to estimates found in younger adult popula-
tions (ICC 0.74–0.94) [42]. However, the number of days
required for a reliable estimate of SB in older adults re-
mains uncertain. Although 2–5 days are suggested from
the studies reviewed, these estimates are drawn from
only two studies, which used an older model accelerom-
eter (7164); therefore, estimates may be less relevant for
newer models. More research is required with newer
model accelerometers, to determine a reliable number of
wear days in older adults. Decisions about the number
of wear-days selected for use in this population must
also consider that adherence to the generally recom-
mended 7-day wear-time protocols can be burdensome
to older adults [36]. A move to a wrist location, which
would avoid the need for removal when changing clothes,
showering or sleeping, may result in greater compliance
with wear-time requirements [43]. Data from NHANES
shows compliance with waist-worn protocols of 40–70%
but 70–80% for wrist-worn protocols [44]. However, further
investigation into the validity and reliability of wrist-worn
accelerometers in older adults is required before their use
in research with this population is recommended.
Another consideration is the selected cut-points, which

can greatly impact the amount of SB recorded. For ex-
ample, Gorman and colleagues [18] reported that in a
population of older women the mins/day spent in SB
ranged from 475 when the cut-point for SB was ≤50 cpm
to 665 when the cut-point was < 500 cpm. The current re-
view found only two studies that examined appropriate
ActiGraph SB cut-points for older adults in free-living
conditions. The evidence from these studies of the GT3X+
suggest a cut-point of < 200 cpm with VM and a cut-point
of < 22–25 cpm with VA, when the wear location is the

hip and the normal filter is used. However, a commonly-
accepted cut-point for adults is VA < 100 cpm. Results of a
study that analysed GT3X data from office workers (mean
age = 47 years) indicated that a cut-point of < 150 cpm
was optimal although < 100 cpm was acceptable [45]. The
analysis used VA and a normal filter. The results of more
recent studies in younger adults (university employees and
university students) that used LFE with the GT3X+ sug-
gested that a < 65 cpm cut-point with VA [46] or a <
150 cpm cut-point with VM [47] were appropriate. In
short, the totality of evidence provides early indications
that higher cut-points are needed for assessing SB in older
adults than in their younger counterparts. Differences be-
tween age groups in these cut-points could indicate that
estimates of movement patterns using cut-points may
vary for different life stages, due to dissimilar balance
and gait speed as well as the nature and contexts of
movement [48, 49].
Other factors influencing estimated SB include deci-

sions about epoch length and non-wear-time algorithms.
From the findings of this review, it appears that 60-s
epochs are the most accurate to use with older adults
for assessing SB with the ActiGraph are, and a 90+ mi-
nute non-wear time algorithm may be most accurate al-
though this result is from only one study. In younger
adults 60-s epochs and 60+ minutes of non-wear time
[50] are generally used in analysis. Others [18] have sug-
gested that 60+ non-wear time algorithms are not likely
to be appropriate for older adults because the large per-
centage of the day that older adults spend sitting quietly
could be misclassified as non-wear time. Although cut-
points remain the most common method for accelerom-
eter data reduction [18], the choice of cut-points and
their inherent assumptions (e.g., epoch length, non-wear
time) greatly impact validity and reliability. Assumptions
also affect comparisons of SB and PA estimates in other
life stages (e.g., children [51] and adults [52]).
A developing alternative approach for estimating SB is

the use of machine learning, or pattern recognition [53].
Three studies in this review indicated that machine learn-
ing algorithms provide more accurate estimates of SB than
other methods when using a 30-s or 60-s epoch. The find-
ings from these studies further suggest that using Acti-
Graph data from free-living conditions are more accurate
than laboratory data in classifying activity as SB with ma-
chine learning. These findings support those from similar
studies in younger adults [54]. As highlighted by Sasaki
and colleagues [31], there is a need for more rigorous
field-based assessment of SB using machine learning as
few such assessments have been conducted in older or
younger adults.
Of the non-ActiGraph monitors examined, early validity

assessments of the ActivPAL3, GENEActiv and Motion-
Watch 8 in older adults show promise for classifying SB in
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older adults. However, studies were conducted in labora-
tories; studies with older adults in free-living conditions
are needed to verify whether findings hold in real-life con-
ditions. In contrast, some studies of the GENEActiv [43,
55, 56] and the ActivPAL or ActivPAL3 [45, 57–60] in
younger samples have been conducted in free-living con-
ditions. These suggests that the wrist-worn GENEActiv
and thigh-worn ActivPAL/ActivPAL3 monitors may be
suitable for estimating population-levels of SB, at least in
younger adults, and therefore, the suitability of these for
use in older adults merits further exploration. Also note-
worthy from this review are the inter-brand differences for
older adults, with findings suggesting that non-wear time
is best captured for the Actical using the rule of ≥120 min
of consecutive zeros, compared with ≥90 min for the Acti-
Graph. Standard algorithms for analysis of ActiGraph data
call for ≥60 min [61, 62].

Strengths and limitations
This review used a systematic search of multiple biblio-
graphic databases. The major strength is the inclusion of
studies of all brands and models of accelerometers that
examined the reliability or validity of accelerometers.
Previous reviews have tended to narrow the focus to one
monitor brand, ActiGraphs. This is reasonable given that
most validation studies have been done with ActiGraphs
[18]. However, for a comprehensive review of the reli-
ability and validity of all accelerometers that are being
used with older adults, it is important to include all ac-
celerometers. Another strength of this review was the in-
clusion of papers published in Spanish and Portuguese
in addition to those published in English. However, all
studies that met the inclusion criteria were published in
English.
Two limitations of the review should be noted. First,

studies were not rated on their quality. Although there
are reporting lists for diagnostic studies, we are not
aware of quality rating lists for studies into measurement
characteristic that are relevant across different models
and brands of monitors or monitors using different as-
sumptions. However, one strength of the included stud-
ies was the rigorous designs used overall, with most
validation studies reporting their assumptions, collecting
data in free-living conditions across multiple days, and
using appropriate concurrent or criterion measures.
Most studies also described criteria for inclusion of data
in analysis and use of non-wear time algorithms. Second,
we only included studies of healthy, community-dwelling
older adults. Although the literature on the validity of
accelerometers in other older populations (e.g., residen-
tial care facilities or with specific diseases) is growing,
the assumptions underlying analysis is likely to be differ
under those situations.

Conclusions
This paper reviewed the literature on the reliability and
validity of accelerometers for measuring SB in older
adults. The number of studies identified was small, 15
studies in 17 papers. Most studies assessed hip- or waist-
worn ActiGraphs. The studies of validity assessed the
GT3X+ model. These studies indicated that analysis of
60-s epochs and a VM cut-point of < 200 cpm in free-liv-
ing conditions or the use of 30-s or 60-s epochs with ma-
chine learning algorithms provide the most valid SB
estimates. Non-wear algorithms of 90+ consecutive zeros
were suggested. This finding indicates that the criteria re-
searchers use for classifying an epoch as sedentary instead
of as non-wear time (e.g., the non-wear algorithm used)
may need to be different for older adults than for younger
adults. However, this conclusion is based on the findings
of only one study. Two studies of an older model Acti-
Graph (7164) examined the number of wear-days that
would be required for an acceptable reliability estimate (>
0.80). Results varied (2–5 days), and the relevance of these
findings to new models is unknown. Also noteworthy was
the paucity of studies on the reliability and validity of
other accelerometer brands. Overall, more older-adult-
specific validation studies of accelerometers are needed, to
inform future guidelines on the appropriate criteria to use
for analysis of data from various accelerometer brands.
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