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Abstract 

Background Over the last decade use of raw acceleration metrics to assess physical activity has increased. Metrics 
such as Euclidean Norm Minus One (ENMO), and Mean Amplitude Deviation (MAD) can be used to generate metrics 
which describe physical activity volume (average acceleration), intensity distribution (intensity gradient), and intensity 
of the most active periods (MX metrics) of the day. Presently, relatively little comparative data for these metrics exists 
in youth. To address this need, this study presents age- and sex-specific reference percentile values in England youth 
and compares physical activity volume and intensity profiles by age and sex.

Methods Wrist-worn accelerometer data from 10 studies involving youth aged 5 to 15 y were pooled. Weekday and 
weekend waking hours were first calculated for youth in school Years (Y) 1&2, Y4&5, Y6&7, and Y8&9 to determine 
waking hours durations by age-groups and day types. A valid waking hours day was defined as accelerometer wear 
for ≥ 600 min·d−1 and participants with ≥ 3 valid weekdays and ≥ 1 valid weekend day were included. Mean ENMO- 
and MAD-generated average acceleration, intensity gradient, and MX metrics were calculated and summarised as 
weighted week averages. Sex-specific smoothed percentile curves were generated for each metric using Generalized 
Additive Models for Location Scale and Shape. Linear mixed models examined age and sex differences.

Results The analytical sample included 1250 participants. Physical activity peaked between ages 6.5–10.5 y, depend-
ing on metric. For all metrics the highest activity levels occurred in less active participants  (3rd-50th percentile) and 
girls, 0.5 to 1.5 y earlier than more active peers, and boys, respectively. Irrespective of metric, boys were more active 
than girls (p < .001) and physical activity was lowest in the Y8&9 group, particularly when compared to the Y1&2 group 
(p < .001).

Conclusions Percentile reference values for average acceleration, intensity gradient, and MX metrics have utility in 
describing age- and sex-specific values for physical activity volume and intensity in youth. There is a need to generate 
nationally-representative wrist-acceleration population-referenced norms for these metrics to further facilitate health-
related physical activity research and promotion.
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Background
Accelerometers are commonly used in physical activity 
and health research concerning surveillance [1, 2], epi-
demiology [3, 4], and intervention evaluation [5, 6]. The 
utility of accelerometers is well established and evidenced 
by observed relationships between physical activity and 
health outcomes across the life-course including all-
cause mortality [3], cardiovascular disease [7], cancer [8], 
obesity [9], musculoskeletal health [10], and psychosocial 
wellbeing [11].

Historically, most accelerometer data have been 
derived from hip-worn devices, but over the last dec-
ade there has been a shift towards alternative wear sites, 
such as the wrist, thigh, and back [2, 12, 13] to improve 
participant compliance to wear protocols and there-
fore enhance the reliability of resultant data [14, 15]. 
In particular, large scale cohort studies such as the UK 
Biobank [2] and the Brazilian Birth Cohort Study [16] 
have employed wrist-worn devices to produce popu-
lation-level data associated with health. Similarly, the 
US NHANES and the NHANES National Youth Fitness 
Survey moved from hip- to wrist-worn physical activity 
assessments to reduce participant burden, resulting in an 
increase in device wear compliance [17–19]. This change 
also provided a more secure and comfortable accelerom-
eter attachment site which aligns better with the 24-h 
movement behaviours paradigm by capturing data over 
the 24-h cycle [20].

In step with these changes has been the increased 
transition from proprietary accelerometer metrics (i.e., 
counts), to use of potentially device-agnostic raw accel-
eration data-driven metrics. Metrics such as Euclidean 
Norm Minus One (ENMO) [21], Mean Amplitude Devia-
tion (MAD) [22], and Monitor Independent Movement 
Summary (MIMS) units [23] provide composite sum-
mary acceleration values and have been increasingly used 
over the last decade. These metrics can be generated in a 
relatively straightforward and cost-effective manner due 
to the increased accessibility of raw acceleration data and 
open-source processing and analysis applications, such as 
the GGIR and MIMS-unit R packages [24, 25].

The potential utility of such metrics was recently 
expanded by Belcher et  al. who published MIMS-units 
US population-referenced percentiles for wrist-worn 
accelerometry [1]. This study, which was based on simi-
lar analyses of hip-worn ActiGraph counts from 2014 
[26] and 2015 [27], included children and adolescents 
aged 3- to 19-years and adults up to age 80 + years. The 
authors reported MIMS-units in over 6000 youth and 
found that activity peaked in both sexes at age 6  years 
and were lowest at age 17 years and 18 years in males and 
females, respectively. It was also observed that females 
accumulated higher MIMS-units than males at lower 

percentiles (<  50th), while the opposite was observed at 
the higher percentiles up to age 11 years [1]. The analy-
sis of Belcher and colleagues provides unique insights 
into age- and sex-related activity differences derived from 
wrist raw acceleration metrics, which in some instances 
were counter to those previously reported for hip-worn 
accelerometer proprietary counts data (e.g., males being 
more active than females at all ages) [1].

In addition to MIMS-units, ENMO and, to a lesser 
extent, MAD metrics have been used as summary accel-
eration metrics with increasing frequency. Presently, 
the differences and patterns in youth physical activity 
for both summary metrics based on average accelera-
tion (i.e., proxy for activity volume) [28] are unknown. 
Furthermore, age- and sex-related differences have not 
been described for additional device-agnostic metrics 
that describe the specific physical activity dimensions of 
intensity (i.e., intensity gradient) [28], and time-related 
intensity (i.e., MX: minimum acceleration for the most 
active accumulated period of time, where X = the period 
of time) [29]. Average acceleration and intensity gradient 
are independently-related to various health and wellbe-
ing outcomes in different populations [28, 30, 31], while 
MX metrics can be used to estimate prevalence of meet-
ing physical activity guidelines [29, 32]. As the use of 
these metrics continues to increase, there is a need for 
reference values to help the physical activity and health 
research community interpret activity levels from con-
tinuous raw acceleration data [33]. However, relatively 
little comparative data for average acceleration, intensity 
gradient, and MX metrics are available for children and 
adolescents, and where it does exist it is limited by nar-
row age groups and/or modest sample sizes [28, 34, 35]. 
To address this need our aims for this novel study were:

1. To present age- and sex-group reference percen-
tile values for ENMO- and MAD-generated average 
acceleration, intensity gradient, and MX metrics in a 
wide age-range of England children and adolescents;

2. To compare volume and intensity physical activity 
profiles for ENMO- and MAD-generated metrics by 
age- and sex-groups.

Methods
Data acquisition and study eligibility
Ten ethically approved wrist accelerometry studies led 
or supervised by the first or last authors were identified 
for inclusion in this pooled individual participant data 
analysis. Eligible studies involved school-aged youth 
who provided assent and who had parental/carer writ-
ten informed consent to participate in physical activity 
research studies during school term time. Seven studies 
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were cross-sectional and three were interventions, six 
focused on primary school students only, two focused 
on secondary school students, and two studies included 
primary and secondary school students. Participant 
inclusion criteria varied by study but as a minimum, par-
ticipants were required to be physically able to regularly 
take part in physical education classes. Individual study 
sample sizes ranged from n = 29 to 311, with a mean of 
n = 150 ± 84 participants. Seven studies included recruit-
ment information to determine the participation rate 
(mean = 72%). The participants’ socio-economic posi-
tion (SEP) spanned English Indices of Multiple Depriva-
tion deciles 1 (low SEP) through 10 (high SEP) [36]. The 
median decile was 4 (IQR = 2, 8) which reflects the estab-
lished health inequalities in northwest England. Partici-
pant characteristics are presented by study in Additional 
file  14. For inclusion in the analysis, studies required 
non-intervention assessments of wrist accelerometer-
derived physical activity. For the included intervention 
studies only baseline data were used. In addition to raw 
acceleration data, as a minimum, studies needed to pro-
vide stature, body mass, and demographic data including 
age and sex. Where published, details of these studies can 
be found elsewhere [37–42]. Investigators with a major 
involvement in the eligible studies (e.g., past PhD stu-
dents, co-supervisors) were approached by email and 
invited to contribute individual participant data to allow 
data harmonisation and subsequent pooled analysis. On 
receipt of signed data transfer agreements all contrib-
uting investigators transferred their de-identified data 
via a secure file sharing system. Ethical approval for this 
pooled individual participant data study was granted 
by Edge Hill University’s Science Research Ethics Com-
mittee (#ETH2021-0034). Data were available from 10 
studies conducted in 71 schools between 2015 and 2022 
in the Merseyside, Lancashire, and Greater Manchester 
counties of northwest England.

Anthropometric and demographic variables
In all contributing studies stature and body mass were 
measured to the nearest 0.1 cm/kg using a portable stadi-
ometer and digital scales, respectively. Standard anthro-
pometrical procedures were followed with participants 
wearing light clothing and shoes removed [43]. Inter-
national Obesity Task Force age- and sex-specific body 
mass index (BMI) cut-points were applied to classify par-
ticipants by weight status [44], and BMI z-scores were 
computed using UK 1990 reference data [45].

Physical activity acceleration metrics
In the contributing studies ActiGraph GT9X (ActiGraph, 
Pensacola, FL; 8 studies), or GENEActiv Original (Activ-
insights, Cambs, UK; 2 studies) triaxial accelerometers 

were used. The devices have a dynamic range of ± 8 g and 
were requested to be worn for up to 7 consecutive days 
on the non-dominant wrist using either 24-h (8 studies) 
or waking hours wear protocols (2 studies), with a sam-
pling frequency set at 100 Hz (8 studies) or 30 Hz (2 stud-
ies). The devices were initialised and data downloaded 
using the latest releases of the respective ActiLife (ver-
sions 6.13.1 to 6.13.4) and GENEActiv (versions 2.2 to 
3.1) available at the time of data collection. Physical activ-
ity metrics were generated from the raw accelerometer 
data files (ActiGraph: gt3x then conversion to.csv format; 
GENEActiv:.bin format) and were processed in R using 
package GGIR version 2.6–0 [24].

Accelerometer data harmonisation
To harmonise data collected from 24-h and waking hours 
protocols it was first necessary to define the age and day-
specific waking windows of interest, as follows: Firstly, 
accelerometer files were sorted into four age-groups 
based on school Year (i.e., Grade) group (Year (Y) 1&2 
(age 5–7 y), Y4&5 (age 8–10 y), Y6&7 (age 10–12 y), and 
Y8&9 (age 12–14 y), which were used in all subsequent 
steps. Next, accelerometer files from 24-h data collec-
tion protocol studies were processed in GGIR parts 1 
to 4 using the default sleep detection algorithm [46] to 
estimate average waking and sleep times (and therefore 
duration of a ‘waking hours’ day) for weekdays and week-
end days. Accelerometer files for 1297 participants were 
processed with the resultant sleep data representing 5627 
participant-days. The averaged waking and sleep times, 
and total awake duration for each group and day type 
(i.e., weekdays, weekend days) are presented in Table 1.

These averaged waking and sleep times were then 
used in separate GGIR shell R scripts to populate the 
qwindows argument to define waking hours during sub-
sequent data processing. This ensured that determina-
tion of the waking day for data processing was specific 
for each age group and day type. Age group accelerom-
eter files, including those from the two studies that did 
not use a 24-h wear protocol, were then re-processed 
separately in GGIR part 2 to calculate the ENMO and 
MAD-derived waking hours physical activity acceleration 
outcome metrics. This processing was undertaken for 
weekdays and for weekend days for each of the four age 
groups (i.e., eight separate data processing runs). Signal 
processing included autocalibration using local gravity 
as a reference [47], detection of implausible values, and 
detection of non-wear. Non-wear was imputed by default 
in GGIR whereby invalid data were imputed by the aver-
age at similar time points on other days of the week [21]. 
An example GGIR configuration file contains details of 
the parameters selected (Additional file  1). Wear time 
criteria were: at least three valid weekdays and one valid 
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weekend day, with ≥ 600  min·d–1 of accelerometer wear 
during waking hours defined as a valid wear day. Partici-
pants’ accelerometer data were excluded from analyses 
if post-calibration error was > 10  mg (milli-gravitational 
units) and/or the wear time criteria were not achieved.

Acceleration metrics
Average acceleration (i.e., average magnitude of dynamic 
acceleration) was calculated during GGIR part 1 process-
ing using ENMO (i.e., the Euclidean norm of the three 
accelerometer axes with 1 g subtracted and negative val-
ues truncated to zero [21], and MAD (i.e., the mean of 
the dynamic acceleration signal with the static compo-
nent removed) [48]. To reflect the intermittent nature of 
youth physical activity behaviour and to ensure higher 
intensity activities were captured both summary metrics 
were averaged over 1-s epochs [49, 50]. The metrics were 
expressed in mg to represent activity volume and were 
used to generate all subsequent metrics. Average acceler-
ation from the ActiGraph and GENEActiv devices worn 
on the non-dominant wrist has demonstrated equiva-
lence in adults [51].

The intensity gradient reflects the negative curvilinear 
relationship between intensity and time accumulated at 
any given intensity, and describes an individual’s inten-
sity profile during the measurement period [28]. A higher 
intensity gradient (i.e., less negative value) reflects pro-
portionately more time being spread across the inten-
sity profile, whereas a lower or more negative gradient 
reflects proportionately less time spent in mid-range 
and higher intensities. Intensity gradient was selected in 
GGIR part 2 using the iglevels = TRUE argument.

The MX metric (where X refers to an accumulated 
duration of time) is the acceleration in mg above which 
the most active X minutes are accumulated. The MX 
metric is a population-independent continuous vari-
able, derived from directly measured acceleration, and 
captures intensity irrespective of level of activity, or fit-
ness status (unlike absolute intensity cut-points) [29]. 
Fourteen different MX metrics were computed to cover 

different durations of interest and thus give a compre-
hensive picture of profile of physical activity. These were 
M2, M5, M10, M15, M20, M30, M45, M60, M120, M240, 
M360, M480, M600, and M720. These metrics were gen-
erated in GGIR part 2 using the qlevels argument aligned 
to the waking hours duration indicated by the qwindows 
time range.

To allow comparisons with previous studies employing 
wrist-accelerometer cut-points, we also calculated time 
spent in moderate-to-vigorous physical activity (MVPA), 
using an ENMO threshold of 200  mg, which approxi-
mates the ActiGraph and GENEActiv cut-points of 
201.4 mg and 191.6 mg, respectively [52]. Using 200 mg 
allowed comparison with previous studies that had used 
either device [28, 31]. We did not calculate MVPA for 
MAD because to our knowledge published cut-points for 
non-dominant wrist data in youth do not exist for this 
summary metric. Additional file 2 provides a summary of 
the GGIR output variables selected.

Data analysis
Processed accelerometer data for each age group were 
firstly combined and then average weighted week (5:2 
ratio) values were computed for average acceleration, 
intensity gradient, MX metrics, and MVPA (ENMO 
only). These data were then harmonised with the corre-
sponding anthropometric and demographic data using 
each participant’s unique ID code. Sex- and age-group 
descriptive statistics were calculated for average accelera-
tion, intensity gradient, M60 (which relates most closely 
to the youth physical activity guideline of at least 60 min 
MVPA·d−1 averaged across the week), and MVPA. We 
used the gamlss R package (v.5.4–10) [53] to create sex- 
and age-specific percentile curves  (3rd,  5th,  10th,  25th,  50th, 
 75th,  90th,  95th, and  97th) for each metric using the Gen-
eralized Additive Models for Location Scale and Shape 
(GAMLSS) method [54]. All metrics were modelled at 
each age (in increments of 0.1  years) with a parametric 
distribution (Box-Cox t, Box-Cox Power Exponential, 
or Box-Cox normal; depending on which distribution 

Table 1 Weekday and weekend averaged wake and sleep times (Mean (SD)) and waking hours duration

Note: Times are in 24-h clock format

Weekday Weekend

Age groups Waking time Sleep time Total awake 
duration (min)

Waking time Sleep time Total awake 
duration 
(min)

Y1&2 07:20 (00:16) 21:16 (00:21) 837 07:59 (00:33) 21:49 (00:29) 830

Y4&5 07:04 (00:11) 21:35 (00:22) 871 07:43 (00:35) 21:55 (00:49) 852

Y6&7 07:14 (00:28) 22:16 (00:21) 902 08:05 (00:35) 22:42 (00:35) 867

Y8&9 07:09 (00:50) 22:49 (00:27) 940 08:02 (01:21) 23:22 (00:41) 860
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had the best model fit). The characteristics of the chosen 
parametric distribution (i.e., the location, scale, skew-
ness, and kurtosis) were then modelled to vary smoothly 
across age using penalised B-splines [55]. Goodness of fit 
was checked for all models using worm plots.

The GAMLj R package (v. 2.4.0) [56] was used to gen-
erate linear-mixed models to examine age and sex dif-
ferences for each metric, while accounting for individual 
participant data being clustered in schools. Season of 
data collection, accelerometer wear time, accelerometer 
type, and recording frequency were included as covari-
ates. Radar plots were constructed to present the sex- and 
age-group MX metrics. These provide a visual translation 
of between-group activity intensity profiles. Each MX 
metric is plotted on one radius and the points joined to 
give a distinct shape for each age- and sex-group. Higher 
intensity profiles are indicated by a greater surface area of 
the plotted shape on the left of the plot, where the shorter 
duration MX metrics were positioned (i.e., M30 through 
to M2) [33]. To enable translation of the MX metrics with 
traditional time-use intensity thresholds, dashed lines are 
included in the plots at 200 mg and 700 mg, to represent 
moderate (MPA) and vigorous physical activity (VPA), 
respectively [52]. To reflect that ENMO has been used 
more extensively than MAD in a range of age groups and 
populations [28, 30–32], we report our results on the for-
mer. Equivalent data for MAD are presented as supple-
mentary material (Additional files 3, 4, 5, 6, 7 and 8)

Results
From the 10 contributing studies n = 2011 partici-
pants had informed parental consent to participate. 
When participants with missing descriptive data and 
without accelerometer output data were removed the 
sample was n = 1503 (75% of consented sample). Two-
hundred-and-fifty-three participants did not achieve 
the accelerometer wear time criteria, resulting in a 
final analytical sample of n = 1250 (62.2% of consented 
sample and 83.2% of sample with accelerometer data; 
Fig. 1).

There were no significant differences in age (p = 0.26), 
BMI z-score (p = 0.98) or sex (p = 0.09) between the 
participants that achieved wear time compliance and 
those that did not. Participant descriptive characteris-
tics for the analytical sample are presented in Table 2. 
The sample consisted of 59% girls, which was mainly 
due to there being substantially more girls than boys 
in the 12–14 y age group. This reflected the inclusion 
of a girls-only study in the pooled dataset. The propor-
tion of participants classified as normal-weight ranged 
from 69 to 77% (boys) and from 70 to 78% (girls), which 
is broadly in line with national data in England corre-
sponding with the years when the included studies were 
conducted [57]. Compliance to the accelerometer wear 
protocol was very good among participants in the ana-
lytical sample (Table 3). On average the accelerometers 
were worn for 6.0 days out of 7 for 14.0 h·d−1 with the 

Fig. 1 Data flowchart for the analytical sample



Page 6 of 14Fairclough et al. Int J Behav Nutr Phys Act           (2023) 20:35 

highest compliance seen in the older groups, and low-
est compliance in the youngest group.

Results for study aim 1
Figure  2 displays the age-specific average acceleration 
percentiles for boys and girls. At all ages boys’ average 
acceleration was greater than girls across the full per-
centile range. Average acceleration peaked between 

ages 6.5 and 7.5 y in the less active boys (up to  50th per-
centile) and between 8.5 and 9.5 y in the more active 
boys, compared to ages 7 and 7.5 y in the less active 
girls (up to  50th percentile) and 7.5 and 8 y in the more 
active girls. The observed age-related decline was grad-
ual in boys and relatively steep in girls from age 11 y. 
Girls’ average acceleration declined most from age 11y 
with the steepest reductions in the most active girls 
(i.e.,  50th-97th percentile).

Table 2 Participants’ descriptive characteristics, grouped by sex and age (Mean (SD), unless stated otherwise)

Boys Girls

Y1&2 Y4&5 Y6&7 Y8&9 Y1&2 Y4&5 Y6&7 Y8&9

n 82 201 163 64 95 253 155 237

Age (y) 6.0 (0.3) 9.7 (0.5) 10.7 (0.6) 13.0 (0.4) 6.0 (0.3) 9.7 (0.5) 10.7 (0.7) 13.7 (0.5)

Height (cm) 116.5 (6.2) 138.3 (6.7) 143.8 (8.0) 160.0 (8.8) 115.8 (5.1) 138.2 (7.2) 144.3 (7.7) 160.2 (6.4)

Weight (kg) 22.3 (3.7) 34.5 (8.5) 38.8 (10.1) 53.5 (11.7) 22.0 (3.7) 35.7 (8.4) 40.3 (11.0) 55.2 (11.3)

BMI (kg‧m2) 16.3 (1.7) 17.9 (3.1) 18.6 (3.5) 20.8 (4.1) 16.3 (2.1) 18.5 (3.2) 19.2 (4.0) 21.4 (3.9)

BMI-z 0.39 (0.97) 0.48 (1.20) 0.46 (1.38) 0.79 (1.15) 0.38 (1.30) 0.55 (1.12) 0.47 (1.31) 0.58 (1.17)

Normal-weight (%) 73.0 77.0 72.0 69.0 78.0 70.0 72.0 76.0

Overweight/obese (%) 27.0 23.0 28.0 31.0 22.0 30.0 28.0 24.0

Table 3 Participants’ unadjusted waking hours average weighted week accelerometer data, grouped by sex and age (Mean (SD), 
unless stated otherwise)

Notes. Accelerometer outcomes calculated using the ENMO metric; MX metrics = minimum acceleration for the most active accumulated X minutes; 
MVPA = Moderate-to-vigorous physical activity

Boys Girls

Y1&2 Y4&5 Y6&7 Y8&9 Y1&2 Y4&5 Y6&7 Y8&9

n 82 201 163 64 95 253 155 237

Valid days (n) 5.1 (0.5) 6.4 (0.7) 6.2 (0.7) 6.1 (0.6) 5.1 (0.4) 6.4 (0.7) 6.3 (0.6) 6.6 (0.7)

Wear (h‧d−1) 13.6 (0.8) 13.9 (0.8) 14.3 (0.8) 14.5 (0.8) 13.6 (0.6) 13.9 (0.8) 14.4 (0.7) 14.6 (0.8)

Average acceleration (mg) 75.9 (19.8) 73.4 (21.5) 74.0 (25.5) 59.2 (27.1) 65.1 (13.6) 62.1 (17.3) 64.3 (17.1) 43.6 (12.2)

Intensity gradient -2.07 (0.12) -2.04 (0.12) -2.07 (0.14) -2.20 (0.18) -2.15 (0.11) -2.14 (0.12) -2.16 (0.14) -2.38 (0.17)

M2 (mg) 1949.1 (423.2) 2088.8 (530.2) 2018.1 (607.1) 1445.1 (662.5) 1552.5 (345.3) 1664.3 (439.7) 1661.0 (519.4) 899.8 (392.0)

M5 (mg) 1386.2 (319.0) 1425.1 (428.6) 1377.5 (481.8) 936.7 (520.9) 1081.3 (262.7) 1096.1 (328.6) 1095.6 (369.8) 593.5 (277.1)

M10 (mg) 963.7 (240.8) 960.4 (323.5) 937.9 (362.6) 634.4 (381.6) 744.4 (188.9) 723.6 (230.9) 733.3 (249.0) 417.1 (210.3)

M15 (mg) 737.01 (198.3) 726.5 (258.9) 716.1 (289.0) 501.0 (325.1) 570.8 (142.5) 547.3 (175.0) 560.9 (183.4) 341.1 (191.0)

M20 (mg) 593.0 (165.7) 583.4 (213.4) 580.6 (237.9) 421.2 (283.1) 463.9 (111.5) 444.8 (139.2) 458.5 (143.0) 291.6 (165.7)

M30 (mg) 423.4 (121.1) 417.1 (146.4) 423.6 (170.2) 324.1 (205.1) 339.6 (73.8) 329.7 (97.1) 343.0 (97.9) 236.3 (149.7)

M45 (mg) 287.4 (82.9) 295.0 (95.9) 303.4 (112.4) 246.3 (128.9) 246.9 (47.9) 244.2 (66.7) 256.3 (66.3) 183.84 (45.8)

M60 (mg) 230.8 (61.4) 230.2 (69.0) 238.3 (82.0) 204.6 (109.4) 196.7 (35.8) 196.9 (51.5) 207.8 (50.5) 154.9 (33.4)

M120 (mg) 122.1 (30.5) 121.5 (31.7) 129.07 (40.9) 112.9 (33.0 108.8 (19.6) 110.6 (28.7) 119.5 (27.7) 93.8 (21.9)

M240 (mg) 52.9 (13.7) 51.7 (14.3) 57.4 (19.9) 49.7 (17.6) 48.6 (10.7) 49.3 (15.1) 54.2 (14.7) 41.6 (12.0)

M360 (mg) 41.8 (10.9) 38.6 (10.8) 41.1 (14.5) 33.5 (12.6) 38.8 (8.9) 37.2 (11.95) 38.7 (10.9) 28.3 (8.6)

M480 (mg) 26.8 (6.8) 26.3 (7.4) 29.6 (10.4) 24.8 (9.1) 25.7 (6.1) 25.7 (8.5) 27.6 (7.9) 21.4 (6.7)

M600 (mg) 14.8 (4.0) 14.4 (4.5) 16.5 (6.1) 13.6 (5.2) 14.5 (4.1) 14.2 (5.4) 15.1 (4.7) 12.0 (4.3)

M720 (mg) 7.0 (2.7) 7.0 (3.0) 8.7 (3.9) 7.3 (3.4) 7.1 (2.7) 7.0 (3.5) 7.8 (3.0) 6.2 (2.8)

MVPA (min‧d−1) 67.1 (21.1) 65.8 (22.1) 68.2 (27.7) 53.9 (27.2) 56.5 (15.0) 55.2 (20.3) 59.8 (20.8) 36.5 (15.0)
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Figure 3 presents age- and sex-specific percentiles for 
intensity gradient. At all ages and activity levels boys’ 
intensity gradient values were higher (less negative) 
than girls. Intensity gradient was highest between ages 
8–9 y and between 7.5–8.5 y in the less active boys and 
girls, respectively (up to  50th percentile). Among the 
most active, intensity gradient peaked between 9.5 and 

10 y (girls) and between 9 and 10 y (boys). In both sexes 
the age-related decline in intensity gradient was some-
what steeper than for average acceleration and was 
most pronounced from age 10 to 11.5 y, with the less 
active participants reducing intensity gradient earlier 
than more active peers.

Fig. 2 Percentiles of waking hours wrist-worn average acceleration for boys (panel a) and girls (panel b)

Fig. 3 Percentiles of waking hours wrist-worn intensity gradient for boys (panel a) and girls (panel b)
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Age- and sex-specific M60 percentiles are shown in 
Fig.  4, with girls’ values consistently lower than boys 
at all ages. M60 was highest between ages 7.5–8.5 y in 
the less active boys (up to  50th percentile) and between 
9.5 and 11 y in the more active boys. In girls M60 
peaked between ages 6.5–8 y (up to  50th percentile) 
and between 8.5 and 9.5 y  (50th -97th percentile). M60 
declined gradually in boys across almost all percentiles, 
although at age 13–14 y the slope plateaued in the most 
active group  (97th percentile). However, at the extremes 
of the curves only a small number of participants were 
represented (e.g., 15 boys in the 97% percentile), there-
fore these data should be interpreted with caution. In 
contrast, girls’ M60 values fell most from age 11 y with 
the steepest reductions at the  50th-97th percentiles.

Figure  5 displays time spent in MVPA. At all ages 
boys’ MVPA was greater than girls’ at each percentile. 
Among the less active participants (up to  50th percen-
tile) MVPA peaked between ages 6.5–8.5 y in the less 
active boys and between 8.5 and 9.5 y in the more 
active boys. In more active peers MVPA was highest 
between 8.5 and 9.5 y (boys) and between 8 and 10.5 
y (girls). The age-related decline in MVPA was gradual 
in boys but was more pronounced in girls from age 11 
y, particularly among the more active girls  (50th-97th 
percentiles). Tables detailing percentiles values for each 
metric are presented in Additional file  10 (Additional 
file  9 for the equivalent tables relating to the MAD-
derived metrics).

Results for study aim 2
For each metric boys were more active than girls 
(p < 0.001) at all Year-groups (Table  3 and Additional 
file 11). For all metrics physical activity was lowest in the 
Y8&9 group, who were significantly less active than the 
Y1&2 group for average acceleration (p < 0.001), inten-
sity gradient (p < 0.001), M2 to M60, and M360 metrics 
(p < 0.0001 to p = 0.048), and MVPA (p = 0.01). Figure  6 
presents the range of MX metrics across age-groups for 
boys and girls, respectively, and shows that the main age-
related differences in physical activity occurred among 
Y8&9 boys and girls. The plots illustrate the physical 
activity profiles underlying the statistical analyses, dem-
onstrating how these differences were most apparent 
at higher intensities represented by the shorter dura-
tion MX metrics. This was more noticeable in girls and 
reflected the timing of the steepest age-related decline 
in intensity gradient. Using the indicative thresholds for 
MPA and VPA (dotted and dashed lines on the plots) 
[58], boys at all ages accumulated 60 min·d−1 in MVPA. 
Among girls 60  min·d−1 of MVPA was accrued by the 
Y6&7 group, with 45  min·d−1 achieved by the younger 
age groups, and around 30  min·d−1 by the oldest girls. 
Approximately 10  min·d−1 and 2  min·d−1 of VPA was 
achieved by the Y8&9 boys and girls, respectively. In 
contrast, the younger age groups accumulated VPA for 
15 min·d−1 (boys) and 10 min·d−1 (girls).

The percentile curves and statistical analyses results by 
age-group and sex were similar for MAD generated met-
rics (Additional files 3, 4, 5, 6, 7 and 8).

Fig. 4 Percentiles of waking hours wrist-worn M60 metric for boys (panel a) and girls (panel b)
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Discussion
This study is the first to report reference percentile values 
for ENMO- and MAD-generated average acceleration, 
intensity gradient, M60, and MVPA across a wide age 
range of boys and girls, derived from wrist-worn accel-
erometers. Our study is timely given the growing use of 
raw acceleration data and in particular, the ENMO met-
ric to report comparable device-agnostic metrics describ-
ing youth physical activity. Providing reference values for 

these metrics may help researchers distinguish how phys-
ical activity volume or intensity (or both) differ by age 
and sex and where participants are positioned in terms of 
their activity levels.

Irrespective of age and metric used (ENMO or 
MAD), boys were more active than girls for all physi-
cal activity outcomes. This concurs with our previous 
findings in children [32] but contrasts with recent pop-
ulation-referenced data from the US, where girls’ mean 

Fig. 5 Percentiles of waking hours wrist-worn MVPA for boys (panel a) and girls (panel b)

Fig. 6 Waking hours physical activity profiles described by MX metrics for boys (panel a) and girls (panel b)
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MIMS-units‧day−1 were higher than boys’ from age 6 to 
19 y [1]. MIMS-units reflect total physical activity vol-
ume and of the metrics reported in our study, are most 
comparable to average acceleration. A recent comparison 
of ENMO, MAD and MIMS-units to ActiGraph counts 
showed that ENMO and MAD increase proportionately 
more at higher intensities than MIMS-units and counts 
[59]. As boys’ undertook more high intensity activity, 
this difference between the metrics at higher intensities 
would likely affect boys’ overall activity volume more 
so than girls’, perhaps contributing to this discrepancy 
between studies [59]. Variations in girls’ and boys’ accel-
erometer wear time in the NHANES data [1], the inher-
ent differences in the signal processing algorithms used 
to determine MIMS-units and ENMO, and the different 
population groups also likely contributed to these dis-
similar findings.

The largest magnitude of differences between boys and 
girls was for the metrics related most to higher intensity 
physical activity (i.e., intensity gradient, lower duration 
MX metrics). This suggests that time in higher inten-
sity physical activity was the main driver for the overall 
sex-related differences. This is consistent with findings 
from cut-point studies reporting significant sex differ-
ences in MVPA and VPA [60, 61] and our recent inten-
sity spectrum work [62] which showed that the largest 
sex differences in 5-to-15 y olds occurred at accelera-
tions ≥ 700 mg, which are indicative of activities with an 
equivalent intensity at least to jogging [63]. Such differ-
ences may reflect multidimensional influences on boys’ 
and girls’ structured physical activity, such as sports. For 
example, more opportunities typically exist for boys than 
for girls to do a wider range of organised out-of-school 
activities [64, 65], boys have superior perceived [66, 67] 
and actual [68, 69] motor competence than girls, and 
stronger parental social support for physical activity and 
praise for boys to engage in active pursuits such as sports 
have been reported [70, 71].

Age-related differences were similar for boys and 
girls across the four metrics. Of these metrics aver-
age acceleration is the most comparable to the recently 
published MIMS-unit reference values for youth aged 5 
and 15 y [1]. However, Belcher et al. showed that MIMS-
units·d−1 peaked at age 6 y in both sexes [1], which was 
earlier than we observed in our sample for any metric. 
The age at which physical activity was highest varied 
between ages 6.5 y through to 10 y across the different 
metrics and both sexes. Generally, average accelera-
tion peaked earlier than metrics which had an intensity 
component; (e.g., intensity gradient typically peaked 
1-year later than average acceleration). This could relate 
to age-linked increases in motor skill proficiency which 
predispose relatively older children to take part in more 

structured and higher intensity physical activities [72]. 
The only other comparable study of youth accelerometer 
reference values reported total activity counts and MVPA 
from NHANES hip accelerometer counts data collected 
between 2003 to 2006 [26]. This also showed boys’ and 
girls’ physical activity from both metrics peaking at age 
6 y, but differed from our findings where average accel-
eration and MVPA were highest between ages 6.5–10 y. 
These differences were most likely associated with dis-
parities in accelerometer-related factors (i.e., signal pro-
cessing algorithms used to determine outcome metrics, 
device placement, selected cut-points), and the charac-
teristics of the respective samples.

We observed that the age of peak physical activity also 
differed by activity level. For less active participants all 
physical activity metrics were highest around 1 y earlier 
than for more active peers. This could have reflected the 
influence of developmental differences and environmen-
tal factors that differentially active children are exposed 
to. A combination of variations in motor competence 
proficiency [68], physical activity and sport opportunities 
[65], structure and intensity of these opportunities [73], 
and psychosocial correlates [71] may have underpinned 
the observed age-related differences. Moreover, we found 
that across all metrics the highest reference values for 
girls occurred at younger ages than for boys. This likely 
relates to differences in the timing and tempo of matu-
ration between boys and girls of the same chronological 
age [74], with girls typically undergoing physical changes 
earlier than boys. Studies have shown that when boys and 
girls are compared by biological age, sex- and chronologi-
cal age-related differences in total physical activity and 
MVPA are attenuated [74, 75]. Further, recent review 
evidence supports the notion that maturational timing 
is inversely associated with overall physical activity and 
sports participation [76]. This evidence though is incon-
sistent, due in part to differences in study methodologies 
(e.g., maturity indicator, device vs. self-report physical 
activity assessments) and adjustment for important con-
founding variables such as chronological age [76].

The MX metrics demonstrated that age-related activ-
ity differences occurred mainly in relation to the Y8&9 
group, which concurs with the percentile reference 
data. Further, these differences were most apparent at 
higher intensities (i.e., lower duration MX metrics), 
which reflects the higher tempo and intermittent nature 
of physical activity in younger children [77]. Moreover, 
there is greater engagement in structured physical activ-
ity and sport among children compared to adolescents 
[65] as a consequence of various factors (e.g., greater 
activity/sport sampling among younger vs. increased spe-
cialisation among older groups [78], age-related drop-out 
from structured sport [79], and increased academic and 
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social time demands among adolescents). When indica-
tive thresholds for MPA and VPA were overlayed on the 
MX radar plots, sex-differences in the time accumulated 
in MVPA were observed, but more striking was the mod-
est duration of accumulated VPA particularly among the 
oldest group (i.e., 10 and 2 min·day−1 for boys and girls, 
respectively). This stark age-related difference in higher 
intensity physical activity is concerning, particularly in 
light of the known associated physical health benefits of 
VPA [62, 80].

Strengths of the study include using 24-h data to 
establish waking and sleep times that were specific to 
age-groups and day-types, which allowed the summary 
physical activity metrics to reflect actual waking hours 
durations, rather than them being defined by an arbitrary 
value (e.g., 16 h reflecting 07.00 to 23.00) [62]. Although 
we used stringent wear time criteria there was a high level 
of compliance to wearing the wrist accelerometers, with 
data available from 83% of participants who had some 
recorded accelerometer outcome data, which exceeds the 
compliance level reported in Belcher’s NHANES sam-
ple [1]. Further, participants in our study averaged 5.1 to 
6.6 d of wear and average wear time of 14.0 h·d−1 from 
an average 14.6 h·d−1 waking hours. Additionally, use of 
standardised accelerometer data processing decisions 
with non-proprietary raw acceleration data gathered 
from different accelerometers allowed data from a large 
number of studies to be pooled. This approach enables 
comparability between wrist-accelerometer studies and 
thus can advance assessment of youth physical activity in 
future.

Study limitations include use of cross-sectional data 
that were not nationally representative of English youth; 
for these reasons the reference values are not intended 
to be generalised beyond the sample population. There 
were also disproportionately more girls than boys in the 
sample and relatively fewer children in the youngest age 
group. This should be taken into account when com-
paring percentile values between age- and sex-groups, 
by considering the potential for values to be less repre-
sentative if sample characteristics vary substantially to 
the reference group. Furthermore, participation rate data 
was not available for all included studies, thus there was 
a risk of sampling bias which could have influenced the 
results. Acceleration recording frequency was 100  Hz 
in eight of the pooled studies and 30 Hz in two. ENMO 
and MAD describe accelerations averaged over a given 
epoch, and thus the influence of recording frequency 
should be minimal, particularly when the same epoch 
duration is used, as was the case in our pooled sample. 
However, we acknowledge that the lower sampling fre-
quency in two of the ten studies may have impacted on 
the resultant output [81]. This is the largest pooled youth 

dataset reporting average acceleration, intensity gradi-
ent, and MX metrics and our analyses provide important 
age- and sex-specific reference data. We hope that this 
will provide the impetus for international efforts to pool 
raw acceleration data on larger scales in order to produce 
nationally-representative reference values for each accel-
eration metric.

Conclusions
This is the first study to present age- and sex-specific ref-
erence values for average acceleration, intensity gradient, 
MVPA, and MX metrics. Physical activity volume and 
intensity peaked between ages 6.5–10.5 y, and were sig-
nificantly lower in the Y8&9 group and girls. Our find-
ings demonstrate the feasibility and utility of generating 
percentile curves for data-driven acceleration metrics 
to aid health-related physical activity research and pro-
motion. We provide these values as a first step towards 
more comprehensive internationally representative refer-
ence value and view them as a marker for researchers to 
use when interpreting values from their own samples. In 
future there is a need to generate country-specific wrist-
acceleration population-referenced norms for average 
acceleration, intensity gradient, and MX metrics. This 
would enable better quality physical activity surveillance, 
monitoring, and health promotion through standardised 
comparisons of device-independent accelerometer met-
rics across populations and subgroups.
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