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Abstract 

Background  The use of health technologies and gamification to promote physical activity has increasingly been 
examined, representing an opportunistic method for harnessing social support inherent within existing social ties. 
However, these prior studies have yielded mixed findings and lacked long-term follow-up periods. Thus, a pilot cluster 
randomized controlled trial was conducted to gauge the feasibility and preliminary efficacy of a digital gamification-
based physical activity promotion approach among teams of insufficiently active adults with existing social ties.

Methods  Teams (N = 24; 116 total participants) were randomized to either a 12-week intervention (Fitbit, step goals, 
app, feedback; TECH) or the same program plus gamification (TECH + Gamification). Mixed effects models were used 
to compare group differences in treatment adherence, and changes in social support, steps, and moderate-to-vigor‑
ous physical activity at 12 weeks and 52 weeks from baseline, adjusted for sociodemographic characteristics and team 
size.

Results  TECH had a lower mean number of days of Fitbit self-monitoring versus TECH + Gamification dur‑
ing the intervention (adjusted difference: -.30; 95% CI, -.54 to -.07; P = .01). Post-intervention, TECH had 47% lower 
odds of self-monitoring 7 days per week versus TECH + Gamification (.53; 95% CI, .31 to .89; P = .02). No differences 
were observed between TECH + Gamification and TECH in increases in social support (0.04; 95% CI, -.21 to .29; P = .76), 
ActiGraph-measured daily steps (-425; 95% CI, -1065 to 215; P = .19), or moderate-to-vigorous physical activity min‑
utes (-3.36; 95% CI, -8.62 to 1.91; P = .21) from baseline to 12 weeks or in the regression of these improvements by 1 
year (Ps > .05). Although not significant in the adjusted models (Ps > .05), clinically meaningful differences in Fitbit-
measured daily steps (TECH, 7041 ± 2520; TECH + Gamification, 7988 ± 2707) and active minutes (TECH, 29.90 ± 29.76; 
TECH + Gamification, 36.38 ± 29.83) were found during the intervention.

Conclusions  A gamified physical activity intervention targeting teams of adults with existing social ties was feasi‑
ble and facilitated favorable, clinically meaningful additive physical activity effects while in place but did not drive 
enhanced, long-term physical activity participation. Future investigations should explore optimal team dynamics 
and more direct ways of leveraging social support (training teams; gamifying social support).
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Background
The 2018 Physical Activity (PA) Guidelines for Ameri-
cans recommend achieving 150 min or more per week 
of moderate-intensity equivalent PA – which translates 
to approximately 7,000–8,000 steps or more per day [1] 
– to obtain numerous physical and mental health ben-
efits, recognizing that more is better [2, 3]. Yet, over 
half of U.S. adults are insufficiently physically active [2, 
4, 5], leading to rising health care expenditures and an 
increased chronic disease risk [2, 6, 7]. Theory-based 
interventions, including those incorporating smart-
phones or wearable PA trackers for self-monitoring 
step counts (a cornerstone digital PA behavior change 
technique) [8, 9], can effectively foster the initiation 
of a physically active lifestyle [9–11]; however, they 
frequently fail to facilitate long-term maintenance of 
initial PA improvements [12–15]. There is a persistent 
public health need to identify scalable PA interventions 
which will have an enhanced and durable impact at the 
population level [10, 11, 16, 17].

Ecological models [18, 19] and the Community Pre-
ventive Services Task Force [20] endorse interventions 
that focus on strengthening and maintaining existing 
social relationships that provide support for PA behav-
ior change. Considerable epidemiological evidence con-
ducted among adults points to a favorable link between 
social support from existing social ties and leading a 
physically active lifestyle [21–28]. The potential impact 
of social support to catalyze lasting physical activity 
behavior improvements may be amplified within exist-
ing social relationships due to the propensity of indi-
viduals to attach meaning to their close social ties and 
seek proximity to them in times of need [22, 28, 29]. 
However, experimental evidence focused on media-
tors of behavior change maintenance in PA interven-
tions remains equivocal [30]. Many PA interventions 
have primarily focused on the individual by conveying 
the value of seeking social support or attempting to 
foster it among persons previously unacquainted with 
one another, potentially helping explain the inconsist-
ency in findings [20, 31–34]. An increasing number 
of PA interventions have directly engaged the existing 
social context and demonstrated promise for promot-
ing favorable short-term outcomes [35–55]; yet, these 
studies were limited by a lack of randomization, device-
based PA measures, long-term follow up, and/or scal-
ability concerns [35–55]. Thus, important questions 
remain about best practices for facilitating maintenance 

of initial PA increases via the direct targeting of exist-
ing social contexts.

Gamification [56] offers an attractive method for har-
nessing the influence of existing social relationships for 
improved PA by seeking to promote positive social inter-
actions and openness to positive behavioral influences 
[57, 58]. It is characterized by the influence motivational 
affordances (i.e., components and mechanics that struc-
ture games) have on psychological outcomes and experi-
ences, and in turn, motivation and behavioral outcomes 
[59]. Popular commercially available electronic and 
mobile health (e/mHealth) technologies [60, 61] allow for 
the seamless delivery of dynamic and interactive gamifi-
cation strategies (e.g., challenges, competitions, rewards, 
etc.) within one’s natural context with little to no added 
burden with respect to materials and time constraints, 
fueling a rapid growth in gamified commercial apps [62] 
and PA interventions with the potential for ready scal-
ability [63–65]. Recent reviews centered on the effec-
tiveness of gamification interventions for increasing PA 
have revealed mixed findings [63–65]. Further, only a 
small number of prior gamification-based PA interven-
tions have isolated the effect of a given social incentive, 
team-based gamification approach [37, 40, 53, 66–73]. Of 
those, fewer than half were conducted in the U.S [37, 66, 
70, 72, 73], and just one PA promotion gamification inter-
vention carried out among adults spanned 1 year [66], 
prompting a continued call for the conduction of rigor-
ous randomized controlled trials  (RCTs) that test novel 
ways to create sustained intervention effects [63–65].

Thus, the purpose of this cluster pilot RCT was to eval-
uate the feasibility (treatment adherence and satisfaction) 
and preliminary efficacy of an e/mHealth gamification 
approach designed to harness the influence of existing 
social ties for increasing steps and moderate-to-vigorous 
physical activity (MVPA) among insufficiently physically 
active adults.

Methods
Study design
A 12-week (April-July 2018), parallel-group, pilot clus-
ter  RCT for promoting PA called Columbia Moves was 
conducted. Participants were recruited (January-April 
2018) from the Greater Columbia, South Carolina, U.S.A. 
area via flyers, e-mails sent via listservs, and word of 
mouth. Interested individuals were encouraged to form 
a self-selected team of 3–8 persons comprised of mem-
bers in their existing social circle (e.g., friends, family 

Trial registration  Clinicaltrials.gov (NCT03​509129, April 26, 2018).
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members, co-workers). Individuals applied through a 
study recruitment website and were screened for eligi-
bility by phone. Then, they were invited to an in-person 
orientation and informed consent was obtained. Follow-
ing the orientation session, individuals’ PA status was 
measured via the ActiGraph GT9X Link accelerometer 
(ActiGraph, Pensacola, FL), serving both as confirmation 
of eligibility and a baseline measure. Additional baseline 
assessments occurred at a subsequent visit. Treatment 
assignment was then communicated to each eligible team 
of individuals via email and an in-person kickoff meeting 
was administered to introduce them to their respective 
intervention. Assessments were conducted immediately 
after the 12-week intervention and at 40  weeks post-
intervention. The assessor was not blind to group alloca-
tion, but assessment instructions were standardized, the 
PA measures were device-based, and survey items were 
administered online via LimeSurvey, minimizing the risk 
of assessor bias. Incentives were offered for completing 
these two assessment periods (drawing for a $50 gift card 
for one participant per study arm and a $20 gift card for 1 
participant per team at 12 weeks, as well as a drawing for 
1 $200 gift card, 4 $100 gift cards, and 5 t-shirts valued at 
$25 across both arms, and $25 gift cards for up to 2 par-
ticipants per team at 52 weeks). The study was approved 
by the Institutional Review Board at the University of 
South Carolina.

Participants
Individuals were eligible if they were between ages 18 and 
65  years, were insufficiently physically active (i.e., had 
an average daily baseline step count of < 7500 [1, 74, 75] 
measured via ActiGraph accelerometry over one week), 
a body mass index (BMI; kg/m2) between 18 and 55, 
access to the internet, owned a smartphone (iPhone or 
Android), and were part of a self-selected team of 2 to 7 
other eligible persons. Individuals were ineligible if they 
were pregnant, lactating, or planning to become preg-
nant within 1 year of enrollment, had diabetes or a medi-
cal contraindication for engaging in moderate-intensity 
PA, or enrolled in another PA program. Members of the 
same household were eligible to participate if they were 
on the same team.

Randomization
Teams were randomly assigned to either a 12-week 
standard technology-delivered PA intervention (TECH) 
or the same intervention plus a step competition and PA 
challenge game (TECH + Gamification) by the lead statis-
tician, using a computer-based random number genera-
tor in a 1:1 ratio, stratified by team size.

Intervention
Common intervention components
Each study arm’s PA intervention was rooted in the 
social cognitive theory (SCT) [76]. Participants were 
prescribed a step goal (average of ≥ 1,000 steps/d dur-
ing week 1, ≥ 2,000 steps/d during week 2, and ≥ 3,000 
steps/d each week thereafter above their personal aver-
age daily baseline step count). This daily step goal reflects 
an incremental progression towards 3,000 steps/d which 
approximates the recommended PA guidelines [75]. They 
received and got to keep a wrist-worn Fitbit Alta HR PA 
tracker, which continuously displays steps and active 
minutes among other metrics. It wirelessly syncs with 
the Fitbit app, allowing participants to track their PA pro-
gress and interact with other Fitbit users. Participants 
were also asked to access a secure, password-protected, 
responsive-design study website to view weekly behavior 
change content focused on goal setting, self-monitoring, 
planning, social support, problem solving, and relapse 
prevention. Each participant’s Fitbit data were acces-
sible via the Fitbit application programing interface and 
automatically drawn into the study website, allowing for 
graphical displays of their personal individual daily step 
count progress over time, each of their teammate’s con-
tribution to their team’s daily step count progress over 
time, and their team’s collective average daily step count 
progress over time relative to all other teams combined 
in their study arm. Based on these data, four experts 
with an advanced degree and corresponding experi-
ence in exercise science, public health, and/or behavioral 
psychology served a specific interventionist role, send-
ing participants a personalized weekly electronic feed-
back message about their step goal progress during the 
first intervention month that followed a standard sug-
gested framework. The website also contained a study 
blog curated by one of these interventionists that supple-
mented the weekly behavior change content, as well as a 
journal feature where participants could record messages 
of self-reflection.

TECH + Gamification
The TECH + Gamification group also engaged with cus-
tom-designed gamification elements underpinned by the 
SCT [76], self-determination theory [77], social network 
theory [76], and behavioral economics principles [73, 76, 
78–80]. Teams participated in a step competition deliv-
ered through the study website. Each team’s cumulative 
average step count was updated and displayed on a lead-
erboard in near real-time based on their incoming Fitbit 
data, along with corresponding team rankings. Partici-
pants were required to sync their data to the Fitbit app 
at a minimum by the end of each week for it to count 
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towards the competition. The team with the most average 
cumulative steps by the end of the 12-week intervention 
won the step competition.

Teams also participated in a weekly PA challenge game 
called the Shoe Mascot Game, which was supported by 
the incoming Fitbit data. Each team had a virtual shoe 
mascot avatar. The object of the game was to keep their 
shoe mascot on a virtual walking trail (highest level of the 
game) and away from three lower levels of the game rep-
resented by sedentary objects by achieving two weekly 
PA challenges that were presented at the start of each 
week on the study website. Each PA challenge had a cor-
responding point value. Some challenges were team-
based (e.g., your team must collectively accumulate more 
steps this week versus the prior week), and others were 
more individual oriented (e.g., one team member will be 
randomly selected to see if they achieved their personal 
step goal for the week). During some weeks, teams could 
pick their challenge from options. If the challenges were 
met, then the team would not lose points, and their shoe 
mascot stayed on the walking trail. If the challenges were 
not fulfilled, then the team would lose points and fall to 
lower levels, with only one chance to return to the walk-
ing trail by achieving a bonus challenge. Team rankings 
for the game were displayed on the leaderboard, and 
the team that retained the most points by the end of the 
12-week intervention won the game. Winning teams of 
the step competition and Shoe Mascot Game received a 
congratulatory message on the website that was visible to 
all other teams.

Outcome measures
Treatment adherence
Mean total number of days per week that participants 
self-monitored their PA, mean proportion of partici-
pants who self-monitored PA at least one day per week, 
and mean proportion who self-monitored PA all 7  days 
per week using their Fitbit, were calculated for both the 
12-week intervention period and 40-week post-interven-
tion period. An accumulated step count of 500 or more 
on any given day represented a valid day of self-monitor-
ing [81–83]. Log-ins to the study website were also moni-
tored during the 12-week intervention.

Treatment satisfaction
At the end of the intervention, participants were asked 
via online questions about their satisfaction with the pro-
gram and willingness to recommend it to family, friends, 
or co-workers using a 5-point Likert-type scale, with 
lower scores reflecting strong dissatisfaction and unlikeli-
ness to recommend it and vice versa.

ActiGraph accelerometer‑measured steps and MVPA
Daily steps and MVPA minutes were measured using 
the ActiGraph at baseline, 12 weeks, and 52 weeks. Par-
ticipants were instructed to wear the device during all 
waking hours (except when showering or swimming) 
for 7 consecutive days on their non-dominant hip using 
a provided waistband and pouch. Data were sampled at 
a frequency of 90 Hz. Using ActiLife 6 software (version 
6.13.3), raw accelerometer data were processed into 
60-s epochs and subsequently scored using the Troi-
ano 2008 adult cut points for classifying MVPA [84], 
with periods of non-wear time (≥ 90 min of continuous 
zeroes) excluded from analysis. Data were considered 
valid if the device was worn for at least 3 days [85–87] 
for at least 10  h/d [88] and subsequently mean values 
for steps/d and MVPA min/d were calculated for each 
of the three respective weekly measurement periods.

Fitbit‑measured steps and active minutes
Data were considered valid if an accumulated daily step 
count of 500 or more was achieved on 3 or more days for 
a given week [81–83, 85, 86, 89].  Mean daily steps and 
active minutes (i.e., sum of fairly active and very active 
minutes, reflecting a PA intensity of 3 or more metabolic 
equivalents, and thus, MVPA) values derived from the 
Fitbit were calculated across the 12-week intervention 
period and 40-week post-intervention period.

Social support for exercise
Perceived social support from family and friends com-
bined for exercise (SSE) was measured online using the 
valid and reliable 13-item Sallis Social Support Scale for 
Exercise [90] at baseline, 12 weeks, and 52 weeks. Par-
ticipants rated each item on a 5-point scale. Item scores 
were averaged, with higher scores indicating a stronger 
perception of support.

Sociodemographic characteristics
Sociodemographic characteristics were reported at 
baseline using an online questionnaire.

Body weight and height
Weight was measured at baseline to the nearest 0.1 kg 
in street clothes, without shoes, using a calibrated 
digital scale (Tanita BWB 800, Arlington Heights, IL). 
Height was measured at baseline to the nearest 0.1 cm 
using a standard stadiometer. BMI was calculated as 
weight (kg) per height (m2).

Statistical analyses
Descriptive statistics were calculated for base-
line demographic measures, retention rates, and all 



Page 5 of 16Monroe et al. Int J Behav Nutr Phys Act          (2023) 20:129 	

outcomes. The generalized linear model with logit link 
was used for investigating the predictors for non-com-
pleters at 12  weeks and 52  weeks. Primary outcomes 
were treatment adherence, study retention, treatment 
satisfaction, and change in ActiGraph-measured daily 
steps from baseline to 12  weeks. Changes in Acti-
Graph-measured daily steps from baseline to 52 weeks, 
ActiGraph-measured daily MVPA minutes from base-
line to 12  weeks and baseline to 52  weeks, SSE from 
baseline to 12 weeks and baseline to 52 weeks, and Fit-
bit-measured daily steps and active minutes aggregated 
across the 12-week intervention period and 40-week 
post-intervention period were secondary outcomes.

For the missing ActiGraph accelerometer data, the 
generalized estimating equation model (GEE) [91] was 
fit to study the association between the non-completers 
and all variables with adjustment of repeated measures 
among participants and the teams. It showed that there 
was no significant association, indicating the missing 
completely at random (MCAR) assumption was appro-
priate [91]. Then, the GEE was applied for each outcome 
of interest with adjustment of repeated measures among 
participants and the teams. The main model was esti-
mated by also adjusting for sex, age, race/ethnicity, edu-
cation, marital status, BMI, team size, and wear time for 
each outcome of interest. Based on the marginal models, 
differences in the changes from baseline to week 12 and 
from baseline to week 52 for mean daily steps and MVPA 
minutes were investigated between the two groups.

For the SSE data, the missing data were not in a mono-
tonic pattern and thus assumed to be missing at random 
(MAR). Multiple imputations were conducted for the 
missing values based on the Markov Chain Monte Carlo 
method. The final results from the imputed data were 
based on 10 imputed data sets [92]. The main mixed 
effects model was applied for the outcome with adjust-
ment of repeated measures among participants and the 
teams. The main model was estimated by also adjusting 
for sex, age, race/ethnicity, education, marital status, 
BMI, and team size for the outcomes of interest. Based on 
the mixed effects models, the differences of the change in 
SSE from baseline to week 12 and from baseline to week 
52 were investigated between the two groups.

Missing Fitbit step data and corresponding active 
minutes data were not in a monotonic pattern and thus 
assumed to be missing at random (MAR), and the afore-
mentioned methods were applied. Two-sample t-tests 
were used to measure differences between groups for 
average number of Fitbit-measured daily steps, active 
minutes, and days of self-monitoring aggregated across 
the 12-week intervention period and the 40-week post-
intervention period. Chi-squared tests were used to 
measure differences between groups in the proportions 

of participants who self-monitored at least one day per 
week, as well as the proportions of participants who 
self-monitored all 7 days per week aggregated across the 
12-week intervention period and the 40-week post-inter-
vention period. The mixed effects models were applied 
for each outcome of interest with adjustment of sex, age, 
race/ethnicity, education, marital status, BMI, team size, 
and teams.

A two-sample t-test and chi-squared test were used 
to measure the differences between groups for mean 
number of log-ins and the proportion of participants 
who logged in at least one time per week, respectively, 
aggregated across the 12-week intervention period. The 
mixed effects models were applied for each outcome of 
interest with adjustment of sex, age, race/ethnicity, edu-
cation, marital status, BMI, team size, and teams. Statisti-
cal significance was set at 0.05. SAS 9.4 was used for all 
analyses.

Results
The flow of participants through the study is shown 
in Fig.  1 (See Additional File 1 for CONSORT check-
list).  Twenty-four teams (N = 116 total participants) 
were randomized to one of two conditions. Participants 
were mostly female (78%), middle aged, White, and well 
educated. At 12  weeks and 52  weeks, 98% and 85% of 
participants were retained, respectively (Table  1). No 
sociodemographic characteristics were predictors of par-
ticipants being lost to follow-up at 12 weeks. At 52 weeks, 
participants without a college degree had 9.5 times (95% 
CI, 2.0 to 46.1) greater odds of dropping out versus those 
with a college degree. ActiGraph wear compliance among 
those who engaged in the measurement was high at each 
time point (See Additional File 2). During the 12-week 
intervention period, Fitbit data that were missing, or 
that had step values of less than 500 steps per day, rep-
resented 6.09% and 2.26% of observations in TECH and 
TECH + Gamification, respectively. During the 40-week 
post-intervention period, these percentages increased to 
43.42% and 30.67%, respectively (See Additional File 3).

Treatment adherence
Based on the two-sample t-tests, significant differences 
were found between groups in the mean number of days 
per week of self-monitoring PA using the Fitbit dur-
ing the 12-week intervention period (TECH, 6.58 ± 1.23; 
TECH + Gamification, 6.86 ± 0.63; P < 0.01) and the 
40-week post-intervention period (TECH, 4.01 ± 3.21; 
TECH + Gamification, 4.85 ± 2.93; P < 0.01). In the 
adjusted mixed effects models, the differences in self-
monitoring rates were significant during the intervention 
period (-0.30; 95% CI, -0.54 to -0.07; P = 0.01) but not 
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during the post-intervention period (-1.22; 95% CI, -2.49 
to 0.04; P = 0.06).

Figure 2 shows the percentage of participants in each 
group who self-monitored their PA at least one day 
per week using the Fitbit over time. Based on the chi-
squared test, on average, a significantly lower propor-
tion of TECH participants self-monitored their PA at 
least one day per week vs TECH + Gamification across 
the 12-week intervention period (98% vs 99%; P = 0.02), 
but in the adjusted mixed effects model, the observed 

odds ratio predicting self-monitoring of PA at least one 
day per week over the 12-week intervention period was 
not significant (0.40, 95% CI, 0.05 to 3.28, P = 0.39). 
A lower mean proportion of TECH participants self-
monitored their PA at least one day per week across the 
40-week post-intervention period versus TECH + Gam-
ification based on the chi-squared test (64% vs 76%, 
P < 0.01), and in the adjusted mixed effects model, 
TECH had 63% lower odds vs TECH + Gamification 
(0.37, 95% CI, 0.18 to 0.77, P = 0.01) of self-monitoring 
their PA at least one day per week.

Fig. 1  CONSORT flow diagram
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Figure  3 shows the percentage of participants in each 
group who self-monitored their PA all 7  days per week 
using the Fitbit over time. Based on the chi-squared test, 
on average, a significantly lower proportion of TECH 
participants self-monitored their PA all 7 days per week 
vs TECH + Gamification across the 12-week interven-
tion period (82% vs 91%; P < 0.01), but, in the adjusted 
mixed effects model, the observed odds ratio regard-
ing self-monitoring of PA was not significant (0.56; 95% 
CI, 0.32 to 1.00; P = 0.05). A lower mean proportion of 
TECH participants self-monitored their PA all 7 days per 
week across the 40-week post-intervention period versus 
TECH + Gamification based on the chi-squared test (44% 
vs 54%, P < 0.01), and in the adjusted mixed effects model, 
TECH had 47% lower odds vs TECH + Gamification 

(0.53; 95% CI, 0.31 to 0.89; P = 0.02) of self-monitoring 
their PA all 7 days per week.

Based on the two-sample t-test, a significant differ-
ence was found between groups in the mean number of 
log-ins per week during the 12-week intervention period 
(TECH, 1.18 ± 3.65; TECH + Gamification, 8.47 ± 15.75; 
P < 0.01). In the adjusted mixed effects model, the differ-
ence in log-in rates remained significant during the inter-
vention period (-7.14; 95% CI, -10.60 to -3.67; P < 0.01).

Figure 4 shows the percentage of participants in each 
group who logged in at least one time per week over 
the 12-week intervention period. Based on the chi-
squared test, on average, a significantly lower propor-
tion of TECH participants logged in at least one time 
per week vs TECH + Gamification across the 12-week 

Table 1  Baseline characteristics and retention rates

Data are mean (SD) unless indicated by % (f)
a moderate-to-vigorous PA
b as measured by ActiGraph accelerometer
c time spent wearing ActiGraph accelerometer
d number of valid days of ActiGraph accelerometer wear
e Score range 1 to 5, with 5 indicating high perceived support

Measure All
(N = 116)

TECH +  
Gamification
(N = 57)

TECH
(N = 59)

Age, years 40.14 (10.31) 40.60 (11.93) 39.69 (8.55)

Female, % (f) 78.45 (91) 78.95 (45) 77.97 (46)

Race, % (f)

  White 66.38 (77) 64.91 (37) 67.80 (40)

  African American 25.86 (30) 22.81 (13) 28.81 (17)

  Asian 4.31 (5) 8.77 (5) 0.00 (0)

  Mixed race 3.45 (4) 3.51 (2) 3.39 (2)

Education, %( f)

  Bachelor’s degree or higher 79.31 (92) 68.42 (39) 89.83 (53)

Relationship Status, % (f)

  Married 62.93 (73) 61.40 (35) 64.41 (38)

  Living as married 1.72 (2) 1.75 (1) 1.69 (1)

  Divorced 6.90 (8) 5.26 (3) 8.47 (5)

  Separated 1.72 (2) 3.51 (2) 0.00 (0)

  Widowed 0.86 (1) 1.75 (1) 0.00 (0)

  Single 25.86 (30) 26.32 (15) 25.42 (15)

  BMI, kg/m2 33.05 (6.85) 32.03 (6.58) 34.03 (7.02)

  Team Size 5.24 (1.54) 5.28 (1.81) 5.20 (1.23)

  MVPA, min/da,b 15.05 (9.39) 14.90 (9.18) 15.19 (9.66)

  Steps/db 4853 (1333) 4990 (1286) 4721 (1375)

  Wear Time, min/dc 855.04 (69.48) 867.15 (80.52) 843.33 (55.03)

  Valid Daysd 6.43 (0.84) 6.60 (0.60) 6.27 (1.0)

  Social Support for Exercisee 2.48 (0.55) 2.62 (0.58) 2.34 (0.49)

  Retained for 12-week follow-up, % (f) 98.28 (114) 100.0 (57) 96.61 (57)

  Retained for 52-week follow-up, % (f) 85.34 (99) 85.96 (49) 84.75 (50)
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intervention period (30% vs 61%; P < 0.01), and in the 
adjusted mixed effects model, TECH had 75% lower 
odds vs TECH + Gamification (0.25; 95% CI, 0.14 to 
0.42; P < 0.01) of logging in at least one time per week.

Treatment satisfaction
Most TECH + Gamification (96%) and TECH (92%) par-
ticipants agreed or strongly agreed that they would rec-
ommend the program to a friend, family member, or 

Fig. 2   Percentage of Fitbit wear indicates the percentage of participants who wore the Fitbit for at least 1 day in that week. Any day during which 
a participant logged 500 or more steps on the Fitbit was regarded as a valid day and constituted wearing the tracker for that day

Fig. 3   Percentage of Fitbit wear indicates the percentage of participants who wore the Fitbit all 7 days in that week. Any day during which 
a participant logged 500 or more steps on the Fitbit was regarded as a valid day and constituted wearing the tracker for that day
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co-worker, and 91% and 90% indicated they were satisfied 
with their respective program.

ActiGraph accelerometer‑based PA changes
The unadjusted mean (SD) change in steps per day from 
baseline to post-treatment (12  weeks) was 939 ± 2068 
for TECH versus 532 ± 1373 for TECH + Gamification. 
At 52 weeks, the unadjusted mean (SD) change in steps 
per day was 577 ± 2175 for TECH versus 231 ± 1758 for 

TECH + Gamification. In the model there were no sig-
nificant differences between the two groups in changes in 
steps per day from baseline to post-treatment (12 weeks) 
(-425; 95% CI, -1065 to 215; P = 0.19) and from base-
line to 52  weeks follow-up (-277; 95% CI, -1043 to 489; 
P = 0.48). Analyses that adjusted for covariates demon-
strated similar results (Table 2).

The unadjusted mean (SD) change in minutes per day 
of MVPA from baseline to post-treatment (12  weeks) 

Fig. 4  Percentage of log-ins indicates the percentage of participants who logged in to the website at least 1 time in that week during the 12-week 
intervention

Table 2  ActiGraph accelerometer PA outcomes

a moderate-to-vigorous PA
b N = 59
c N = 57
d N = 50
e N = 49
f Adjusted for repeated measures and team random effect
g Adjusted for repeated measures, team random effect, age, BMI, marital status, sex, race/ethnicity, education, team size, and wear time
h The TECH + Gamification arm is compared with the TECH arm during the specified periods

Mean (SD) Modelf Model adjusted for covariatesg

Measure TECH TECH + 
Gamification

Gamification
Effecth

P Value Gamification
Effecth

P Value

Baseline

  Steps/d 4721 (1375)b 4990 (1286)c NA NA NA NA

  MVPA, min/da 15.19 (9.66)b 14.90 (9.18)c NA NA NA NA

12 weeks

  Steps per day 5695 (2527)c 5522 (1980)c -425 (-1065–215) .19 -274 (-882–334) .38

  MVPA, min/da 21.56 (18.54)c 17.78 (12.75)c -3.36 (-8.62–1.91) .21 -2.66 (-7.88–2.55) .31

Follow-up, 52 weeks

  Steps/d 5339 (2156)d 5361 (2099)e -277 (-1043–489) .48 -133 (-868–601) .72

  MVPA, min/da 19.19 (17.25)d 16.94 (14.57)e -1.67 (-7.84–4.50) .60 -0.95 (-6.92–5.02) .75



Page 10 of 16Monroe et al. Int J Behav Nutr Phys Act          (2023) 20:129 

was 6.02 ± 17.59 for TECH versus 2.88 ± 10.42 for 
TECH + Gamification. At 52  weeks from baseline, the 
unadjusted mean (SD) change in minutes per day of 
MVPA was 3.46 ± 18.52 for TECH versus 2.08 ± 13.20 
for TECH + Gamification. In the model (Table  2) there 
were no significant differences between the two groups 
in changes in minutes per day of MVPA from baseline to 
post-treatment (12  weeks) (-3.36; 95% CI, -8.62 to 1.91; 
P = 0.21) and from baseline to 52 weeks follow-up (-1.67; 
95% CI, -7.84 to 4.50; P = 0.60). Analyses that adjusted for 
covariates showed similar results (Table 2).

Fitbit‑based PA outcomes
Figure 5 shows the mean number of steps in each group 
over time. Based on the two-sample t-test, a significant 
difference was found between groups in the mean num-
ber of total daily steps over the entire 12-week interven-
tion period (TECH, 7041 ± 2520; TECH + Gamification, 
7988 ± 2707; P = 0.02), but in the adjusted model, the 
difference was not significant (-1165; 95% CI, -2443 to 
114; P = 0.07). No significant difference between groups 
was found in the mean number of total daily steps over 
the entire 40-week post-intervention period (TECH, 
6542 ± 2710; TECH + Gamification, 6317 ± 2457; P = 0.45) 
based on the two-sample t-test, and the difference 
remained non-significant in the adjusted model (125; 
95% CI, -604 to 854; P = 0.74).

Figure 6 shows the mean number of active minutes in 
each group over time. Based on the two-sample t-tests, 
no significant differences were found in the mean num-
ber of total daily active minutes between conditions 
both over the 12-week intervention period (TECH, 
29.90 ± 29.76; TECH + Gamification, 36.38 ± 29.83; 
P = 0.14) and 40-week post-intervention period (TECH, 

26.50 ± 32.40; TECH + Gamification, 25.26 ± 33.19; 
P = 0.74). Similar results were observed in the adjusted 
models (-4.68; 95% CI, -14.92 to 5.56; P = 0.37, and 2.34; 
95% CI, -6.77 to 11.45; P = 0.62, respectively).

Social support changes
The unadjusted mean (SD) change in SSE from baseline 
to post-treatment (12  weeks) was 0.46 ± 0.70 for TECH 
versus 0.50 ± 0.67 for TECH + Gamification. At 52 weeks 
from baseline, the unadjusted mean (SD) change in 
SSE was 0.41 ± 0.59 for TECH versus 0.41 ± 0.59 for 
TECH + Gamification. In the model there was no sig-
nificant difference between the two groups in SSE from 
baseline to post-treatment (12 weeks) (0.04; 95% CI, -0.21 
to 0.29; P = 0.76) and from baseline to 52  weeks follow-
up (-0.02; 95% CI, -0.25 to 0.21; P = 0.87). Analyses that 
adjusted for covariates demonstrated similar results 
(Table 3).

Discussion
This study assessed the feasibility and preliminary effi-
cacy of a socialincentive-based gamification approach for 
improving PA. The findings suggest that the addition of 
a step competition and weekly PA challenge game to an 
e/mHealth PA intervention among teams of insufficiently 
active adults with existing social ties is feasible and 
acceptable. While in place, this gamification interven-
tion facilitated positive, clinically meaningful differences 
in Fitbit-measured daily steps and active minutes versus 
an identical program without gamification. However, 
once withdrawn, it did not result in increases in Acti-
Graph-measured daily steps, MVPA, and social support 
over and above what was observed with the traditional e/
mHealth treatment alone.

Fig. 5   Fitbit derived mean number of daily steps
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This is the first e/mHealth gamification PA study 
among teams of adults with existing social ties to meas-
ure participants’ PA using both research grade and 
commercial accelerometers over one year via an RCT, 
yielding valuable insights about both the short- and long-
term effects of team-based gamification among adults. 
Metrics regarding adherence to self-monitoring PA using 
the Fitbit were high for both study arms during the inter-
vention but slightly declined thereafter. A more favorable, 
self-monitoring profile was observed for TECH + Gami-
fication versus TECH, suggesting that the gamified ele-
ments had the desired effect of creating a heightened 

culture of accountability [93] by prompting participants 
to frequently track and sync their PA to ensure their team 
got credit for it. These findings are consistent with those 
from a previous micro-randomized trial among adults 
in which a positive causal effect of a smartphone-based 
gamified team competition was found for the propor-
tion of days that participants on the team provided daily 
steps [72]. In the current study, nearly three-quarters of 
TECH + Gamification participants were still self-mon-
itoring their PA at least one day per week versus half 
for TECH by the end of the 40-week post-intervention 
period. It is possible that the self-monitoring behaviors 

Fig. 6   Fitbit derived mean number of daily active minutes

Table 3  Social support outcomes

a N = 59
b N = 57
c N = 49
d N = 48
e Adjusted for repeated measures and team random effect
f Adjusted for repeated measures, team random effect, age, BMI, marital status, sex, race/ethnicity, education, and team size
g The TECH + Gamification arm is compared with the TECH arm during the specified periods

Mean (SD) Modele Model adjusted for covariatesf

Measure TECH TECH + 
Gamification

Gamification
Effectg

P Value Gamification 
Effectg

P Value

Baseline 2.34 (0.49)a 2.62 (0.58)b NA NA NA NA

12 weeks 2.80 (0.65)b 3.12 (0.64)b 0.04 (-0.21 to 0.28) .76 0.04 (-0.21 to 0.28) .76

Follow-up, 52 weeks 2.76 (0.60)c 3.01 (0.66)d -0.02 (-0.25 to 0.21) .87 -0.02 (-0.25 to 0.21) .87
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established while each respective intervention was in 
place turned into habits that persisted, but in the absence 
of the other theory-based gamification elements, it was 
potentially not impactful enough to sustain the PA lev-
els observed during the intervention. Interestingly, in a 
6-month, financial incentive-based PA promotion RCT 
targeting individual employees, only 10% of participants 
across treatment conditions were self-monitoring PA 
using their Fitbit at one-year based on the same valid 
day criterion used in the current study [81]. The higher 
adherence to self-monitoring PA across both arms in 
the present study at one year might be due to leveraging 
teams of existing social ties instead of individuals, poten-
tially creating a social climate that increased the likeli-
hood of sustained self-monitoring. Future team-based 
PA promotion studies should examine social processes 
among teammates and their relationship to self-monitor-
ing and PA behaviors.

Consistent with prior studies, [58, 94–96] gamification 
resulted in greater engagement with the study web app as 
reflected by log-in rates during the intervention, plausi-
bly because participants were keeping abreast of the team 
competition and weekly challenge game. Although not 
statistically different, a similar pattern was observed for 
Fitbit-measured daily steps and active minutes during the 
intervention, with an average difference of 947 steps and 
just over 6 active minutes favoring TECH + Gamifica-
tion versus TECH. These represent clinically meaningful, 
health-promoting PA values that could have an impact-
ful effect at the population level [2, 97] and are situated 
among mixed short-term findings from previous gami-
fication PA RCTs using device-based measures among 
adults [37, 49–55, 66, 68, 69, 71, 72, 98–102]. Taken 
together, it is possible that the overall enhanced interven-
tion adherence effects of gamification largely drove these 
differences in Fitbit-measured physical activity during the 
intervention via more frequent exposure to theory-based 
content on the study web app, meaningful social interac-
tions around physical activity, and enactment of self-reg-
ulation strategies (self-monitoring progress towards goals 
which is a strong predictor of physical activity behavior 
change) [9].

The game-based strategies did not confer an added 
benefit in Fitbit-measured PA during the post-inter-
vention period. Relatedly, similar, modest increases in 
ActiGraph-measured daily steps and MVPA were cap-
tured immediately after intervention removal in both 
study arms, and these improvements slightly declined to 
a similar degree; however, they remained above baseline 
by 1 year, perhaps due to factors related to being part of 
a team [42, 103]. The intent of targeting teams of indi-
viduals with existing social ties was to harness a social 
structure conducive to sustaining support for PA – a key 

contributor to maintaining regular PA participation [20] 
– potentially ignited by the gamification elements. How-
ever, similar increases in social support were observed 
in both study arms immediately post-intervention, and 
these improvements drifted back towards baseline by 
1  year. These findings indicate that engaging teams of 
insufficiently active adults with existing social ties in a 
gamified, e/mHealth PA program is not sufficient to ele-
vate social support to an extent that drives sustained PA 
enhancements beyond a program without these gamifi-
cation elements. While the implemented gamification 
approach did not drive lasting, enhanced PA changes, 
it does not necessarily indicate that existing social ties 
are not potent or influential; rather, there may be bet-
ter ways of leveraging the support inherent within them. 
For instance, directly gamifying social support and/or 
providing formal training on how teammates can best 
support each other [104, 39] may be needed to facilitate 
desired long-term outcomes and should be explored in 
future investigations.

It is possible that the gamified approach served largely 
as an extrinsically oriented motivating factor that had a 
positive effect while in place but inability to drive sus-
tained PA participation once removed. This factor in 
combination with the lack of an enhanced gamification 
effect on social support may have stifled the chance to 
develop intrinsic motivation which is a strong predic-
tor of PA adherence [105–107]. Similarly, a previous PA 
promotion RCT examining the effectiveness of Fitbit 
trackers and financial incentives observed an undermin-
ing effect of cash incentives, finding short-term increases 
in daily steps that regressed over a 6-month follow-up 
period upon incentive removal [81]. A recent meta-anal-
ysis of evidence regarding the effectiveness of gamifica-
tion on PA [63] found a small but weak long-term (12 to 
24 weeks follow-up) effect for these interventions. Future 
PA promotion research should experimentally seek to 
determine the optimal integration of social incentive-
based gamified elements with individual, relational, and 
team characteristics (e.g., race/ethnicity, sex, employ-
ment, education, starting PA level, geographic location, 
type of relationships, team size, etc.) for promoting reg-
ular PA. Using formative research to inform interven-
tion design [107] and ecological momentary assessment 
to capture frequent participant perspectives during and 
after treatment could yield valuable insights in this realm, 
including the psychosocial mechanisms underlying 
observed effects.

Further, future research should explore whether novel 
“booster” gamification doses (e.g., additional chal-
lenges) should be implemented during a maintenance 
phase [57, 59, 63, 64]. Previous studies have shown 
that novelty assists with  reinforcement learning  and 
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reward processing [108]. For example, a population-
wide mHealth intervention in Singapore implemented 
individual- and corporate team-based booster step 
challenges along with small prizes following the main 
intervention period which resulted in additional 
increases in steps [109]. In the U.S., previous employer-
sponsored and statewide, team-based physical activity 
campaigns have demonstrated promise for increasing 
physical activity [41, 110, 111]. Going forward, under-
standing how best to maximize the long-term impact 
of e/mHealth gamification approaches involving social 
networks, ongoing booster initiatives, and small incen-
tives on a large scale via delivery across entities with 
widespread reach (e.g., commercial, corporate, state-
wide, etc.) should be a priority.

In the current study, it was not possible to disen-
tangle the effects of the team competition and weekly 
challenge game on the outcomes, which reflects one 
limitation. Another limitation is the predominantly 
female and highly educated sample, reducing the gen-
eralizability of the findings. However, this study has 
several strengths, including the following: 40-week 
post-intervention period; two device-based PA meas-
ures; use of an RCT to isolate the efficacy of a custom 
gamification approach delivered through technologies, 
enhancing scalability potential; measurement of social 
support; high retention; and recruitment of teams with 
varying combinations of existing social ties (friends; 
family; co-workers).

Conclusions
Augmenting a theory-based e/mHealth PA promotion 
program with gamification elements designed to tap into 
social support within existing social ties was feasible and 
resulted in a positive, clinically meaningful additive PA 
effect while in place but did not enhance PA once with-
drawn. Given the support inherent within existing social 
ties, increasing ubiquitousness of health-promoting tech-
nologies, and heightened commercial and scientific inter-
est in gamification, continued exploration of methods 
that capitalize on the combination of these three factors 
for affecting PA and overall well-being is warranted.
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