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Abstract
Background Accurately measuring energy expenditure during physical activity outside of the laboratory is 
challenging, especially on a large scale. Thigh-worn accelerometers have gained popularity due to the possibility to 
accurately detect physical activity types. The use of machine learning techniques for activity classification and energy 
expenditure prediction may improve accuracy over current methods. Here, we developed a novel composite energy 
expenditure estimation model by combining an activity classification model with a stride specific energy expenditure 
model for walking, running, and cycling.

Methods We first trained a supervised deep learning activity classification model using pooled data from available 
adult accelerometer datasets. The composite energy expenditure model was then developed and validated using 
additional data based on a sample of 69 healthy adult participants (49% female; age = 25.2 ± 5.8 years) who completed 
a standardised activity protocol with indirect calorimetry as the reference measure.

Results The activity classification model showed an overall accuracy of 99.7% across all five activity types during 
validation. The composite model for estimating energy expenditure achieved a mean absolute percentage error of 
10.9%. For running, walking, and cycling, the composite model achieved a mean absolute percentage error of 6.6%, 
7.9% and 16.1%, respectively.

Conclusions The integration of thigh-worn accelerometers with machine learning models provides a highly 
accurate method for classifying physical activity types and estimating energy expenditure. Our novel composite 
model approach improves the accuracy of energy expenditure measurements and supports better monitoring and 
assessment methods in non-laboratory settings.
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Background
An individual’s physical behaviour includes physical 
activity and sedentary behaviour. Both are known to be 
important and modifiable behavioural factors affect-
ing human health [1, 2]. The underlying dimensions of 
physical behaviour include intensity, duration, domain 
and type of activity or posture [3]. An important compo-
nent of physical activity intensity is energy expenditure. 
Activity-related energy expenditure is the most vari-
able component of total energy expenditure and can be 
modified by changes in physical behaviour [4]. Changes 
in energy expenditure can have a significant impact on 
energy balance and contribute to successful weight man-
agement [5]. Recent evidence from the UK Biobank sug-
gests a strong association between activity-related energy 
expenditure and the incidence of type 2 diabetes [6]. In 
addition, accurate measures of energy expenditure can 
be incorporated into closed-loop insulin delivery systems 
and continuous glucose monitoring systems to improve 
glycaemic control in people with diabetes [7]. Thus, more 
accurate measurement of energy expenditure can help to 
understand energy balance and develop effective inter-
ventions to prevent and manage highly prevalent diseases 
such as obesity or type 2 diabetes.

While energy expenditure can be accurately estimated 
in the laboratory using various methods such as indirect 
calorimetry, it remains challenging in free living condi-
tions [4]. The Doubly Labelled Water method is consid-
ered the gold standard for assessing free-living energy 
expenditure, but it remains costly, requires advanced 
infrastructure, and therefore cannot be easily scaled for 
large-scale use in research and medical settings.

Wearable devices such as accelerometers and smart-
watches are now widely used to assess physical activity 
and can potentially be used to estimate free-living energy 
expenditure based on acceleration parameters or heart 
rate. However, existing wearable systems and estima-
tion methods have shown limited accuracy in estimating 
energy expenditure [8–10]. Recent advances in the accu-
racy of accelerometer-based energy expenditure estima-
tion have been made by using machine learning-based 
algorithms to classify activity types and combining these 
with activity-specific estimation models [11, 12]. Previ-
ous research also suggests that stride-segmented esti-
mation methods based on lower body kinematics can be 
used for more accurate estimation of energy expenditure 
[13]. Most of these novel approaches have been devel-
oped and applied to hip- and wrist-worn accelerometers 
or require the use of multiple sensor placements.

Thigh-worn accelerometers are increasingly being used 
in large epidemiological studies due to the ability to accu-
rately classify a range of activity types and postures using 
data-driven algorithms and raw acceleration signals [3, 
14, 15]. A variety of machine learning techniques have 

been applied to thigh-worn accelerometer data, mainly 
focusing on activity type and posture classification [16–
19] and intensity categories [20]. To date, a small number 
of studies have attempted to estimate energy expenditure 
from thigh-worn accelerometry, primarily using simple 
regression techniques on aggregated acceleration metrics 
or cadence [10, 21–23].

The recent success of more advanced energy expendi-
ture estimation approaches, coupled with the ability to 
accurately classify activity type and available informa-
tion on thigh kinematics, suggests the potential for more 
accurate energy expenditure estimation using the raw 
acceleration signal from a thigh-worn sensor. The aim 
of this study was to train a composite machine learning 
model to estimate energy expenditure from raw thigh 
accelerometer data by applying activity classification 
and stride segmentation to the raw accelerometer data, 
and to validate the model’s performance against indirect 
calorimetry.

Methods
We developed a composite activity type and stride-spe-
cific energy expenditure estimation (CATSE3) model to 
enable energy expenditure estimation based on raw 3D 
acceleration. The multi-model approach involves several 
key steps and algorithms which are outlined in Fig. 1:

1. Pre-processing: The raw acceleration signal is 
resampled, auto-calibrated and low-pass filtered 
using an eighth-order Butterworth filter.

2. Activity classification: A classification algorithm 
identifies the activity type based on 4-second epochs 
of time-series 3D acceleration data.

3. Stride segmentation: Individual strides are 
identified within sequences of walking, running, and 
cycling. The 3D acceleration data is segmented into 
individual strides.

4. Energy expenditure estimation: Depending on 
the predicted activity type, energy expenditure is 
estimated based on individual strides (for walking, 
running, and cycling) or aggregated acceleration 
metrics (for sitting and standing).

Sample population
The study included data collected from 69 healthy adults 
divided into two independent samples. Data from the 
training sample (n = 49; 45% female; age = 26.0 ± 6.3 
years; BMI = 23.0 ± 2.6  kg/m²) were used to develop the 
processing pipeline and train the energy expenditure 
models. Data from the test sample (n = 20; 60% female; 
age = 23.2 ± 3.8 years; BMI = 23.4 ± 1.8  kg/m²) were used 
only to evaluate the developed approach.
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Participants were recruited via newsletters, social 
media, and posters at the university campus. Participants 
had no known disability and were free to engage in physi-
cal activity. Each participant provided written informed 
consent prior to participation in the study, which was 
approved by the Ethics Committee of the German Sport 
University Cologne (ref. 142/2023). Participants were 
financially compensated for their time.

Instrumentation
Triaxial acceleration was sampled at 100  Hz with a 
dynamic range of ± 8  g using an inertial measurement 
unit (AX6, Axivity Ltd, Newcastle upon Tyne, UK). Prior 
to each session, a calibration routine was performed in 
which the sensor was mounted inside a rectangular plas-
tic cube. The cube was then placed on each side for 10 s 
to establish reference values for each axis. The device 
was attached directly to the skin on the lateral side of the 

Fig. 1 Processing steps comprised in the CATSE3 model. Raw triaxial acceleration data is required as input and a time-series with energy expenditure 
predictions is the resulting output
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participant’s dominant thigh, midway between the hip 
and knee. The device was first attached to a skin-friendly 
adhesive tape (Fixomull stretch; BSN medical GmbH, 
Hamburg, Germany) using double-sided adhesive tape, 
which was then placed on the skin. The device was 
secured with an elastic bandage (Peha-haft Color; Paul 
Hartmann AG, Heidenheim, Germany) wrapped around 
the thigh.

Walking and running were performed on an instru-
mented treadmill (quasar med; h/p/cosmos sports & 
medical GmbH, Nussdorf-Traunstein, Germany) and 
cycling was performed on a stationary bicycle ergometer 
(ergoselect 100; ergoline GmbH, Bitz, Germany). Indirect 
calorimetry was used to estimate reference energy expen-
diture via gas exchange using a metabolic cart (Metalyzer 
3B, Cortex Biophysik GmbH,  Leipzig, Germany). The 
metabolic cart was calibrated prior to each session fol-
lowing manufacturer instructions.

Activity protocol
Each subject was asked to complete a standardised activ-
ity protocol including sitting, standing, walking, run-
ning, and cycling. The protocol varied slightly between 
the training and validation samples to introduce addi-
tional variability (Table  1). It was designed to include a 
range of basic activities and intensities while adhering to 
best practice recommendations [24]. Participants were 
allowed to skip any activity condition that they were 
unable to complete. All treadmill walking and running 
conditions were performed at a 1% incline to account for 
reduced energy expenditure, unless otherwise stated [24]. 
For all cycling conditions, revolutions per minute (rpm) 
were chosen ad libitum between 60 and 80  rpm. Each 

activity condition lasted 6 min. For the walking, running, 
and cycling conditions, participants had a 5-min rest 
period between each condition.

Data processing
Oxygen uptake and carbon dioxide output were mea-
sured on a breath-by-breath basis throughout the study 
and converted to energy expenditure using Weir’s equa-
tion [25]. Steady state energy expenditure was calculated 
by averaging all breaths over the last three minutes of 
each condition and expressed as kilocalories per minute 
per kilogram of body weight.

Raw acceleration data were downloaded from the 
sensors using OMGUI v1.0.0.30 [26] and saved as 
comma-separated values (CSV) files. The raw data were 
pre-processed using the actipy package v3.0.5 [27]. First, 
the acceleration data were low-pass filtered using an 
8th order Butterworth filter with a cut-off frequency of 
20  Hz. The data were then auto-calibrated against local 
gravity using a validated approach [28] and resampled to 
ensure a sampling rate of 100 Hz. The acceleration data 
were then partitioned into non-overlapping 4-second 
intervals.

Classification of activity types
We trained a deep learning-based activity classification 
model to predict the activity type based on 4-second 
intervals of 3D acceleration data. To train the classifi-
cation model, we used pooled data from three existing 
accelerometer datasets, totalling n = 69 healthy adult par-
ticipants, independent of the data collected in this study. 
The characteristics of each dataset and the training pro-
cess are detailed in Additional File 1. The pooled data-
set included various laboratory and free-living physical 
activities, including walking, running, standing, sitting, 
lying down, and cycling. Reference labels for the activ-
ity type were obtained either from direct observation or 
from video annotation.

A supervised machine learning approach was used, 
where the model was trained on labelled data (i.e. 3D 
acceleration data and corresponding activity type label). 
During the training process, the model parameters are 
iteratively adjusted to minimise a given loss function cor-
responding to the overall classification error. We chose a 
hybrid Convolutional Neural Network (CNN) and Bidi-
rectional Long-Short Term Memory (BiLSTM) model 
architecture to predict the probability of each activity 
class for a given 4-second interval. The hybrid architec-
ture allows the deep learning model to extract spatial 
features based on the CNN layers while also learning 
temporal patterns using the BiLSTM layer. Previous 
research has successfully applied a hybrid CNN-BiLSTM 
approach to classify sedentary behaviour from hip-worn 
accelerometer data [29]. Model training and optimisation 

Table 1 Activity protocol for the training and validation group
Training Validation

Activity Intensity / Speed
Sitting Freely
Standing Freely Freely
Walking (km/h) 2.1 2.5

2.9 3.3
3.7 4.1
4.5
3.7 with 6% incline 3.3 with 6% incline

Running (km/h) 7.5 8
8.5 9
9.5 10
10.5
9.5 with 6% incline 8 with 6% incline

Cycling (W) 30 50
60 75
90 100
120
150
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was performed using Keras [30] and KerasTuner [31]. 
We chose a window size of 4  s based on previous find-
ings [16] and the time required to capture at least one full 
stride during slow walking.

Segmentation of strides
For each continuous sequence (i.e. one or more 4-second 
segments) of walking, running, and cycling, the indi-
vidual strides were identified and segmented using an 
activity-specific approach. First, the acceleration signal 
is low-pass filtered using a fourth order Butterworth fil-
ter. For running and cycling sequences, the acceleration 
data collected along the x-axis (i.e. the vertical axis of the 
thigh when standing still) is low-pass filtered with a cut-
off frequency of 5  Hz. Similarly, for walking, the accel-
eration along the z-axis (sagittal axis) is low-pass filtered 
with a cut-off frequency of 5  Hz. After filtering, each 
of these signals is passed to a peak detection algorithm 
which identifies strides as peaks in the respective accel-
eration signal. In a final step, the acceleration data of each 
stride is discretised into an equal number of samples by 
splitting it into 30 bins using Fast Fourier Transform [13].

Estimation of energy expenditure
A hybrid temporal convolutional network (TCN) deep 
learning model was trained to predict energy expendi-
ture during running, walking, and cycling using the 3D 
acceleration of a stride and activity type as model inputs. 
The TCN model architecture [32] allows learning from 
sequential data and has previously been used to success-
fully estimate gait events based on raw time-series data 
from a single inertial measurement unit (IMU) worn 
on the shank [33]. We used the KerasTCN implementa-
tion [34] for model training. The model architecture and 
training procedures are described in more detail in Addi-
tional File 2.

In addition, we developed a number of different linear 
regression models to estimate energy expenditure based 
on the Euclidean Norm Minus One (ENMO) and the 
Mean Amplitude Deviation (MAD), which were calcu-
lated over each 4-second epoch. For baseline compari-
son, two simple linear regression models were fitted to 
the training set data to predict energy expenditure as the 
dependent variable using either ENMO or MAD. Two 
additional models were fitted by further including the 
activity type and its interaction effect with the accelera-
tion metric (i.e. ENMO or MAD). These activity-specific 
linear regression models allowed the use of aggregated 
acceleration metrics to be compared with the use of more 
detailed stride-specific acceleration signals in the hybrid 
TCN model. The CATSE3 approach integrates the hybrid 
TCN model for walking, running, and cycling sequences 
and the ENMO-based activity-specific regression model 
for sitting and standing sequences.

Statistical analysis
The classification performance for the trained CNN-BiL-
STM activity classification model as well as the accuracy 
of the overall energy expenditure model was evaluated 
on the test dataset to provide robust estimates based on 
unseen data.

For the classification, the metrics used for evalua-
tion included overall accuracy, recall, precision, and F1 
score. The overall accuracy was calculated as the number 
of true positive predictions divided by the total number 
of samples. Recall was calculated as the number of true 
positives divided by the sum of true positives and false 
negatives. Precision was calculated as the number of true 
positives divided by the sum of true and false positives. 
The F1 score was calculated as the harmonic mean of 
recall and precision.

The metrics used to evaluate the accuracy of the energy 
expenditure estimation include the root mean squared 
error (RMSE), the mean absolute percentage error 
(MAPE), the coefficient of determination (R²), bias and 
95% limits of agreement.

All data processing, model training and analysis were 
performed using Python v.3.11 [35]. The code used for 
analysis and the resulting models are available in the 
public Zenodo repository (https://doi.org/10.5281/
zenodo.13477127).

Results
Activity classification
The activity classification model achieved an overall accu-
racy of 99.7% with F1 scores > 0.99 across all five activ-
ity types when applied on the test set (n = 23,040 activity 
samples). Sensitivity ranges from 0.99 for running to 1.00 
for walking and sitting (Fig. 2).

Energy expenditure estimation
The simple linear regression model using the ENMO 
metric showed the highest estimation error with a RMSE 
of 0.023 kcal/kg/min and MAPE of 41.5%. The stride and 
activity type-based algorithm (CATSE3) achieved the 
lowest RMSE of 0.013 kcal/kg/min and MAPE of 10.9% 
(Table  2). The R² values ranged from 0.828 for the sim-
ple ENMO model to 0.945 for the CATSE3 algorithm. 
The prediction of the CATSE3 model showed a nega-
tive bias close to zero (< 0.001 kcal/kg/min), whereas the 
predictions of all other models showed a negative bias of 
≥ 0.005 kcal/kg/min (Fig. 3).

Across all walking conditions, the CATSE3 model 
achieved a MAPE of 6.6%, while the regression mod-
els including the activity type achieved MAPEs of 15.0% 
(ENMO + activity type) and 14.5% (MAD + activity type). 
MAPE values for running ranged from 7.9% (CATSE3 
and MAD + activity type) to 10.5% (ENMO), while for 
cycling they ranged from 16.1% (CATSE3) to 29.6% 

https://doi.org/10.5281/zenodo.13477127
https://doi.org/10.5281/zenodo.13477127
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(MAD + activity type). Post-hoc Pearson correlation 
analysis showed negative correlations between the par-
ticipants height (r = -0.69) and weight (r = -0.47) with the 
prediction error in cycling.

Discussion
Our study aimed to develop and test a new approach for 
estimating energy expenditure based on raw 3D accel-
eration data from wearable accelerometers attached 
to the thigh. We successfully trained a deep learning 

algorithm on a pooled accelerometer dataset to clas-
sify basic activity types based on raw 3D acceleration 
data. By combining the activity classification algorithm 
with a stride-specific energy expenditure estimation 
approach, the CATSE3 model achieved a MAPE of 10.9% 
across different activities and intensities. In comparison, 
the activity-specific linear regression models showed 
a higher relative error (≥ 16.4%) and the simple linear 
regression models without the activity type showed more 
than twice the relative error (≥ 24.2%). These findings are 

Table 2 Error metrics for the energy expenditure estimation models. RMSE = root mean squared error; MAPE = mean absolute 
percentage error; R² = coefficient of determination; ENMO = euclidean norm Minus one; MAD = Mean Amplitude deviation
Model Bias 95% Limits of Agreement RMSE

(kcal/kg/min)
MAPE
(%)

R²
Lower limit Upper limit

CATSE3 -0.001 -0.026 0.025 0.013 10.9 0.945
ENMO -0.009 -0.051 0.033 0.023 41.5 0.828
MAD -0.008 -0.043 0.027 0.020 24.2 0.876
ENMO + activity type -0.005 -0.035 0.026 0.016 16.7 0.916
MAD + activity type -0.005 -0.035 0.025 0.016 16.4 0.919

Fig. 2 Confusion matrix with the ground truth activity classes and classes predicted by the CNN-BiLSTM classification model for the test set (n = 20 par-
ticipants; 23,040 samples). Values presented are row percentages with the number of samples in brackets
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Fig. 3 Scatterplots showing the relationship between the model energy expenditure predictions and the reference energy expenditure
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consistent with results from previous research using a 
stride-specific model based on input data from two IMUs 
worn on the thigh and the shank [13]. The information 
contained in the raw 3D acceleration data of each stride 
cycle allows the CATSE3 model to distinguish between 
flat and inclined walking and running. This is probably 
due to small changes in the 3D acceleration curve dur-
ing inclined gait. In comparison, the models based on the 
time-aggregated ENMO and MAD acceleration metrics 
do not appear to capture the increased energy expen-
diture associated with inclined walking and running 
(Fig. 4).

A more recent model based on wrist-worn IMU data 
combined an activity classification algorithm with walk-
ing speed estimation to predict energy expenditure dur-
ing walking, sitting, and standing with an overall MAPE 
of 15% [11]. Previous research proposed a simple model-
ling equation based on the triaxial vector magnitude of a 
thigh-worn sensor to estimate energy expenditure during 

walking [22]. However, the model showed a MAPE of 
18% over a range of walking speeds, whereas the CATSE3 
model in our study showed a substantially lower MAPE 
of 6.6%. Importantly, the estimates of energy expenditure 
during cycling (MAPE = 16.1%) were not as accurate as 
during walking and running (7.9%). It appears that the 
model does not capture variations in energy expenditure 
during cycling very well (Fig. 3), which is consistent with 
previous research using hip-worn accelerometer data 
[12].

Strengths and limitations
The activity protocol for this study followed recent guide-
lines for wearable energy expenditure validation studies 
[24]. The combination of multiple activity types, intensi-
ties, and flat and inclined treadmill activities allowed all 
models to be trained and evaluated over a wide range of 
activity conditions. However, additional activities such as 

Fig. 4 Predicted energy expenditure for different participants as well as walking, running, and cycling conditions
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stair climbing, or downhill walking and running were not 
included in this study.

It is important to recognise that the CATSE3 model 
and the mapping of energy expenditure to the stride 
acceleration time series are based on data from treadmill 
walking and running as well as stationary cycling. How-
ever, there may be differences in the stride acceleration 
profiles of the thigh in free-living conditions, that may 
affect the transferability of our results. Previous research 
suggests that the biomechanics of walking and running 
on a treadmill are largely comparable to those on the 
ground, but there are minor differences in spatiotem-
poral (i.e. shorter stride length and higher cadence) and 
sagittal plane kinematics (increased hip and knee flexion 
angles) [36–38]. The impact of these differences on thigh 
acceleration curves is currently unknown, but warrants 
caution and further investigation.

Our study benefited from the integration of different 
datasets for model training and evaluation. We trained 
our activity classification model on an independent data-
set that included data from several existing studies in 
different contexts, including laboratory and free-living 
activities. Therefore, we expect the classification model 
to be reasonably robust, as evidenced by the high over-
all classification accuracy both during model develop-
ment (99.3% for the hold-out set) and on the test dataset 
(99.7%). However, the classification performance may not 
be indicative of actual performance in real-world con-
ditions and needs to be further evaluated, ideally using 
an independent dataset with free-living activities and a 
more heterogeneous sample. In general, our sample for 
this study is considered homogeneous in terms of BMI, 
age, and health status. Therefore, the generalisability of 
our results to other populations, such as children, older 
adults, or people with gait disorders, may not be given.

Future investigations
It is currently unknown how the model performs for 
undefined activities and intensities outside the range 
included in the study (e.g. very fast walking). The inclu-
sion of additional activity types (e.g. climbing stairs, lying 
in bed) and a wider range of walking and running speeds 
is likely to improve estimation accuracy. Future iterations 
of the model should therefore consider extending the 
range of activity types and account for unknown activity 
types.

Another way to improve the accuracy of the model may 
be to include body weight and height as additional input 
variables, as both are related to energy expenditure and 
the magnitude of the prediction error [22]. In addition, 
the estimation of energy expenditure during sitting and 
standing may be improved by integrating an estimate of 
the basal metabolic rate rather than including only an 
aggregated acceleration metric [13].

Conclusions
To our knowledge, the CATSE3 model is the first energy 
expenditure model that uses both activity classification and 
stride segmentation to estimate energy expenditure based 
solely on thigh acceleration data. With this study, we pro-
vide the physical activity research community with several 
open-source energy expenditure estimation algorithms for 
thigh-worn accelerometers of varying complexity.

Our results show that stride specific information con-
tained in the 3D acceleration signal can be used in com-
bination with activity type information to achieve a lower 
estimation error when compared to simpler estimation 
approaches currently used in physical activity research. 
Energy expenditure estimates based on activity and 
stride-specific information appear to be more accurate 
than approaches using aggregated acceleration metrics 
such as ENMO or MAD. The integration of available 
and validated activity classification algorithms should 
be encouraged in future research on energy expenditure 
estimation methods using thigh-worn accelerometry.
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