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Abstract 

Background Information on the influences of daily eating frequency (DEF) and nighttime fasting duration (NFD) 
on biological aging is minimal. Our study investigated the potential associations of DEF and NFD with accelerated 
aging.

Methods Out of 24212 participants in NHANES 2003–2010 and 2015–2018, 4 predicted age metrics [homeostatic 
dysregulation (HD), Klemera–Doubal method (KDM), phenoAge (PA), and allostatic load (AL)] were computed based 
on 12 blood chemistry parameters. Utilizing 24-h dietary recall, DEF was measured by the frequency of eating occur-
rences, while NFD was determined by assessing the timing of the initial and final meals throughout the day. Weighted 
multivariate linear regression models and restricted cubic spline (RCS) were utilized to examine the associations.

Results Compared to DEF of ≤ 3.0 times, subjects with DEF ≥ 4.6 times demonstrated lower KDM residual [β: -0.57, 
95% confidence-interval (CI): (-0.97, -0.17)] and PA residual [β: -0.47, 95% CI: (-0.69, -0.25)]. In comparison to NFD 
between 10.1 and 12.0 h, individuals with NFD ≤ 10.0 h were at higher HD [β: 0.03, 95% CI: (0.01, 0.04)], KDM residual 
[β: 0.34, 95% CI: (0.05, 0.63)], and PA residual [β: 0.38, 95% CI: (0.18, 0.57)]. Likewise, those with NFD ≥ 14.1 h also had 
higher HD [β: 0.02, 95% CI: (0.01, 0.04)] and KDM residual [β: 0.33, 95% CI: (0.03, 0.62)]. The results were confirmed 
by the dose–response relationships of DEF and NFD with predicted age metrics. Lactate dehydrogenase (LDH) 
and globulin (Glo) were acknowledged as implicated in and mediating the relationships.

Conclusions DEF below 3.0 times and NFD less than 10.0 or more than 14.1 h were independently associated 
with higher predicted age metrics.

Keywords Daily eating frequency, Nighttime fasting duration, Biological aging, Predicted age metrics, National 
Health and Nutrition Examination Survey (NHANES)

Background
Aging is the accumulation of life’s consequences, like 
molecular and cellular damage, causing a decline in func-
tion, chronic illnesses, and eventually death [1]. Across 
our lifespan, diverse factors such as age, genetic suscep-
tibilities, environmental exposures, and lifestyle practices 
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play a role in the accrual of damage [2]. Considering the 
significant aging of the global population, accelerated 
aging exposes adults to higher vulnerability to morbid-
ity and mortality, resulting in rapidly rising healthcare 
costs associated with aging [3]. Implementing strategies 
focusing on multiple dimensions of daily life is crucial for 
managing the risks of aging.

Recently, a review has outlined how biological aging 
can be measured through twelve hallmarks such as epi-
genetic modifications, proteomic profiles, metabolomic 
markers, and composite clinical parameter algorithms 
[4]. Among those, the combined clinical-parameter 
algorithms have been demonstrated the ability to accu-
rately predict chronological age (CA) [5]. Such predic-
tions delineate the internal aging mechanisms, indicating 
the real health and functional condition of the body [6]. 
Utilizing the Mahalanobis distance metric, homeostatic 
dysregulation (HD) quantified the deviation between an 
individual’s clinical measurements and the reference set 
by a young, healthy population [7]. The measurement of 
Klemera–Doubal method (KDM) determining the dete-
rioration of the body was made possible by performing 
regression analyses between specific biomarkers and 
chronological age in the reference population [8]. By uti-
lizing elastic-net Gompertz regression, phenoAge (PA) 
was calculated by examining various factors associated 
with mortality risks to offer an estimate of the likeli-
hood of death [9]. The assessment of allostatic load (AL) 
involved the measurement of biomarker levels indicat-
ing increased disease risks, capturing the cumulative 
impact of chronic stress and life events [10]. People shar-
ing the same CA may undergo different biological aging 
stages and susceptibility to morbidity and mortality [11]. 
Uncovering the causes of accelerating aging is essen-
tial for developing interventions to decelerate biological 
aging, and prolong both health span and lifespan.

Chrono-nutrition, an emerging field of nutritional sci-
ence, investigates the effects of circadian eating behaviors 
on health, emphasizing the significance of the rhythms of 
food consumption in addition to its quantity and qual-
ity for health [12]. Nutritional challenges reshape the 
circadian clock, whereas timing-specific food consump-
tion has been demonstrated to deeply impact physiology 
[13]. Increasing evidence indicated that disruptions in 
circadian rhythms and mistimed eating, including skip-
ping breakfast, consuming high-energy meals during din-
ner, and eating late at night detrimentally affected health 
[13–16].

The progression of aging is a multifactorial process, 
with diet playing an important role [17]. The impact of 
diet is extensive. Opting for healthy eating habits could 
contribute to improving energy metabolism, maintain-
ing metabolic balance, reducing oxidative stress, and 

preventing abnormal inflammatory reactions [18–20]. 
Serum lactate dehydrogenase (LDH) is a key oxidore-
ductase enzyme in glycolysis, commonly increased dur-
ing inflammation [21]. Increased LDH and its mRNA 
suggest that glucose indirectly affects tissue tricarboxylic 
acid cycle (TCA cycle) metabolism through circulating 
lactate, except in the brain [22]. Globulin (Glo), a diverse 
protein group, may indicate inflammation and oxida-
tive stress due to its roles in matrix repair and immune 
regulation [23]. Findings from animal experiments sug-
gest that urinary globulin in rats peaks with their feed-
ing cycle, and fasting exacerbates its reduction via mRNA 
suppression [24]. Consequently, the two indicators listed 
are considered as potential mediators in our study’s 
associations.

Recently, findings from a cohort study comprising 
30464 adults demonstrated that both reduced daily eating 
frequency (DEF) and shortening or lengthening night-
time fasting duration (NFD) were independently related 
to higher risk of cardiovascular and all-cause mortality 
[25]. This may be explained by the relationship between 
lower DEF and higher blood pressure and serum choles-
terol levels [26], alongside the associations of longer NFD 
with improvements in body weight [27], insulin sensitiv-
ity [28], and inflammation [29, 30]. Nonetheless, there is 
limited research on whether DEF and NFD, two features 
of circadian eating behaviors, are related to the biologi-
cal aging process. Here, we examined how DEF and NFD 
were associated with four projected age metrics (HD, 
KDM, PA, and AL) based on National Health and Nutri-
tion Examination Survey (NHANES) 2003–2010 and 
2015–2018.

Methods
Study population
The NHANES program is a continuous, nationwide 
study that focus on gathering information related to the 
health, nutrition, and lifestyle of the general popula-
tion in the United States. It is conducted by the National 
Center for Health Statistics within the Centers for Dis-
ease Control and Prevention (CDC) and has been ongo-
ing since the 1960s. The program has been approved by 
the National Center for Health Statistics Research Ethics 
Review Board and undergoes annual assessments (ethics 
approval number: Protocol #98–12, Protocol #2005–06, 
Continuation of Protocol #2005–06, Continuation of Pro-
tocol #2011–17, and Protocol #2018–01). Data collection 
methods, including interviews, physical examinations, 
and laboratory testing, are performed either at mobile 
examination centers (MECs) or in individuals’ homes 
[31]. The cross-sectional data utilized for our analysis 
was obtained from NHANES 2003–2010 and 2015–2018, 
involving 24212 participants who met the specified 
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criteria: adults not in a pregnant state (n = 37851), stand-
ard energy consumption (the recommended daily energy 
intake of 800 to 4200 kcal for males and 500 to 3500 kcal 
for females) (n = 30208) [32], possess complete informa-
tion on DEF and NFD (n = 26535), all components of 
predicted age metrics and covariates are comprehensive 
(n = 24212) (Fig. 1).

Assessment of exposure
Data on food consumption over two nonconsecutive days 
was captured through two 24-h dietary recall interviews, 
as outlined by the guidelines from the U.S. Department 
of Agriculture’s Food and Nutrient Database for Dietary 
Studies [33]. The first interview was done face-to-face, 
followed by the second interview took place via tele-
phone 3–10 days later. Participants were asked to provide 
the consumption time for each food and drink during the 

interviews. Eating episodes were characterized by the 
number of occurrences in which calorie-containing foods 
or drinks were consumed, with a conservative threshold 
of 50 kcal set for identifying each eating episode [26]. 
The mean DEF was computed by averaging the eating 
episodes recorded over the two days. The calculation for 
the mean NFD utilized the formula: 24 h minus the time 
of last meal plus the time of the first meal. To provide 
an example, if a participant’s first eating time was 8:00 
a.m. and his/her last eating time was 8:00 p.m., the NFD 
would be 24 minus 20 plus 8, resulting in 12 h of fasting.

Assessment of main outcomes
By employing a selected group of 12 blood chemistry 
parameters (Supplementary Table 1—2), HD, KDM, and 
PA were determined through the use of the most repu-
table algorithms, initially standardized with NHANES 

Fig. 1 The gradual selection process of participants from the NHANES 2003–2010 and 2015–2018
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1988–1994 (NHANES III) and originally detailed by 
Nakazato et  al. [34], Klemera et  al. [35], and Levine 
et  al. [36], correspondingly. The relevant code could be 
accessed via the R package “BioAge” at https:// github. 
com/ dayoo nkwon/ BioAge. In our research, we desig-
nated individuals as being at risk by allocating them to 
the top quartile for eleven biomarkers, with the excep-
tion of albumin, for which individuals in the lowest quar-
tile were identified as being at risk according to previous 
study [37]. The AL, ranging from 0 to 1, represented the 
proportion of biomarkers designated as “at risk”.

The residual differences between predicted age met-
rics and chronological age were termed age accelerations 
(AAs), which harmonized inconsistencies across the 
measurement platforms for each component of predicted 
age metrics [38, 39]. To determine the AAs, residual val-
ues were calculated through a linear regression analysis 
with either KDM or PA as the independent variable and 
chronological age as the dependent variable [40]. Resid-
uals were not calculated for HD and AL, as they were 
not considered age metrics and were factored in devia-
tions from a reference population [8, 41]. With HD being 
significantly skewed in our study, we transformed HD 
using the natural logarithm transformation and used it 
as the outcome in models predicting HD age accelera-
tion. Higher levels of HD, KDM residuals, PA residuals, 
and AL suggest accelerated aging [42–44], with subse-
quent analyses emphasizing these variables as primary 
outcomes.

Assessment of mediation variables
Trained phlebotomists at NHANES MECs collected 
blood samples without requiring fasting. Participants 
were allocated randomly to morning, afternoon, or even-
ing sessions, with all samples being refrigerated and 
transferred to Collaborative Laboratory Services for 
analysis. LDH was determined using the Beckman Syn-
chron LX20 with LDH reagent through an enzymatic rate 
method. Within our study, following the same approach 
as the previous investigation, only subjects with normal 
LDH levels (105–333 IU/L) were included [45]. Serum 
Glo is a set of proteins responsible for transporting 
diverse substances and participating in defense mecha-
nisms in the body [46], with levels ranging from 14–65 
g/L [47]. Additional details about the LDH and Glo anal-
ysis techniques are provided in the NHANES Labora-
tory/Medical Technician Procedures Manual (LPM) [48].

Assessment of covariates
Confounders considered in the present analysis were age 
(years), sex (male/female), race [Mexican American/other 
Hispanic/non-Hispanic White/non-Hispanic Black/oth-
ers (including Asians or multiracial)], NHANES cycle 

(year), body mass index (BMI, kg/m2), smoking (yes/no), 
drinking (yes/no), exercise (yes/no), education (below 
high school/high school/above high school), annual fam-
ily income (≤ $55,000/ > $55,000), sleep duration (hours), 
shift work (yes/no), daily energy intake (kcal/d), nutri-
ent supplement use (yes/no), healthy eating index-2015 
(HEI-2015), weekend dietary survey data (yes/no), self-
reported cancer (yes/no), cardiovascular diseases (CVD) 
(yes/no), hypertension (yes/no), and diabetes (yes/no). 
The calculation of BMI was obtained by dividing weight 
in kilograms by the square of height in meters. The meta-
bolic equivalent scores for weekly recreational activities 
was used to assess physical activity, with regular exer-
cise defined as participating in a minimum of 150 min 
of moderate to high-intensity physical activity per week 
[49]. The HEI-2015 serves as a summary measure of com-
pliance with the USDA 2015–2020 Dietary Guidelines for 
Americans [50], assessing the consumption of total fruits, 
whole fruits, total vegetables, greens and beans, total 
protein food, seafood and plant protein, whole grain, 
dairy, fatty acids, refined grain, sodium, added sugar, and 
saturated fat.

Statistical analysis
Referring to NHANES analytic guidelines guaranteed 
thorough consideration of sample weights, stratification, 
and clustering to account for the complex survey design, 
with the inclusion of these factors in all analyses. Demo-
graphic features, disease prevalence, and anthropomet-
ric measurements were depicted as means (95% CI) for 
continuous variables and percentages (n) for categorical 
variables, which were analyzed utilizing general linear 
regression and logistic regression. Categorization into 
quintiles was applied to the DEF and NFD. Multivari-
ate linear regression models were utilized to analyze the 
associations of DEF and NFD with HD, KDM residu-
als, PA residuals, and AL. Assumptions were examined 
using the Durbin-Watson test, scatter plots, correlation 
coefficients, tolerances, variance inflation factor (VIF), 
and Q-Q plots, and no violations were observed. Visu-
alization of the dose–response relationships between 
DEF and NFD and predicted age metrics was displayed 
using restricted cubic spline (RCS) with 3 knots at the 
10th, 50th, and 90th percentiles [51]. Mediation analysis 
using mediation package (version 4.5.0) was performed 
to evaluate the mediation effects of LDH and Glo in the 
associations. The following factors were used to conduct 
multiple stratified analyses to investigate potential modi-
fying impacts: age (≤ 60 years/ > 60 years), sex (male/
female), race (non-Hispanic white/others), BMI (< 30 
kg/m2/ ≥ 30 kg/m2), smoking (yes/no), drinking (yes/
no), exercise (yes/no), education (above high school/oth-
ers), income (≤ $55,000/ > $55,000), sleep duration (≤ 7 
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h/ > 7 h), daily energy intake (male, ≤ 2500 kcal/ > 2500 
kcal and female, ≤ 2000 kcal/ > 2000 kcal) [52], HEI-2015 
(< 30.53/ ≥ 30.53), dietary supplements use (yes/no), NFD 
(< 12.58 h/ ≥ 12.58 h), and DEF (< 4 times/ ≥ 4 times). Sta-
tistical analyses were performed using R 4.1.1, with sta-
tistical significance set at a two-sided P < 0.05.

Results
Baseline characteristics
The demographic characteristics, disease prevalence, and 
anthropometric measurements of participants stratified 
by quintiles of DEF and NFD were shown in Table 1 and 
Supplementary Table 3. Participants in quintile 1, with an 
eating frequency of no more than 3.0 times, were more 
likely to be younger, non–drinkers, non-regular exercis-
ers, and night shift workers; have higher BMI, NFD, Glo, 
HD, KDM residual, PA residual, and AL; as well as lower 
education, annual household income, daily energy intake, 
HEI-2015, and dietary supplements use when compared 
to those in quintiles 2 to 5, where DEF exceeded 3.0 times 
(Table  1). Participants in quintile 1, with an NFD of no 
more than 10.0 h, were more likely to be younger, male, 
non-Hispanic white, smokers, drinkers, regular exercis-
ers, and night shift workers; have lower BMI, sleep dura-
tion, Glo, HD, KDM, and PA; as well as higher education, 
daily energy intake, DEF, LDH, and PA residual when 
compared to those with an NFD exceeding 10.0 h (quin-
tiles 2 to 5) (Supplementary Table 3).

In terms of the different quantitative aging measures 
examined in the present study, participants’ predicted 
age metrics were closely correlated with their chronologi-
cal ages (Supplementary Fig. 1).

Associations of DEF and NFD with predicted age metrics
Compared to those in the lowest quintile (≤ 3.0 times), 
subjects in the highest quintile of DEF (≥ 4.6 times) dem-
onstrated lower KDM residual [β: -0.57, 95% CI: (-0.97, 
-0.17)] and PA residual [β: -0.47, 95% CI: (-0.69, -0.25)] 
(Fig.  2, Supplementary Table  4). Unlike DEF, the sec-
ond quintile (10.1 – 12.0 h) of NFD was defined as the 
group of reference. According to the weighted beta and 
95% CIs, individuals in the lowest quintile (≤ 10.0 h) 
were at higher HD [β: 0.03, 95% CI: (0.01, 0.04)], KDM 
residual [β: 0.34, 95% CI: (0.05, 0.63)], and PA residual [β: 
0.38, 95% CI: (0.18, 0.57)]. Likewise, those in the top 20% 
(≥ 14.1 h) had higher HD [β: 0.02, 95% CI: 0.01, 0.04)] 
and KDM residual [β: 0.33, 95% CI: (0.03, 0.62)] (Fig. 2, 
Supplementary Table 5).

Dose–response relationships between DEF and NFD 
and predicted age metrics
There was a significant negative correlation between DEF 
and NFD (r = -0.59, P < 0.001) (Supplementary Fig.  2). 

With the exclusion of KDM residual (Poverall < 0.001, 
Pnonlinearity = 0.067), linear relationships were observed 
between DEF and HD (Poverall < 0.001, Pnonlinearity = 0.028), 
PA residual (Poverall < 0.001, Pnonlinearity = 0.005), and AL 
(Poverall < 0.001, Pnonlinearity = 0.005). The predicted age 
metrics consistently decreased as DEF increased, reach-
ing a beta estimate of 0.0 at around 4.0 times per day. 
Concerning NFD, HD (Poverall < 0.001, Pnonlinearity = 0.001), 
KDM residual (Poverall < 0.001, Pnonlinearity = 0.005), PA 
residual (Poverall < 0.001, Pnonlinearity < 0.001), and AL (Pov-

erall < 0.001, Pnonlinearity < 0.001) all exhibited a gradual 
decrease as NFD extended to 10–14 h per day. Subse-
quent increases in NFD led to a gradual increase of the 
predicted age metrics, demonstrating robust U-shaped 
relationships (all Pnonlinearity < 0.01) (Fig. 3).

Effects mediated by LDH and Glo on the associations 
of DEF and NFD with predicted age metrics
Our findings illustrated the significant effects mediated 
by LDH and Glo on the associations of DEF and NFD 
with predicted age metrics (Fig.  4). Statistical analysis 
using standardized regression coefficients showed the 
total effects of DEF on HD (βTot = -0.06, P < 0.001), KDM 
residual (βTot = -0.09, P < 0.001), PA residual (βTot = -0.08, 
P < 0.001), and AL (βTot = -0.06, P < 0.001). Corre-
spondingly, the total effects of NFD on HD (βTot = 0.03, 
P < 0.001), KDM residual (βTot = 0.06, P < 0.001), and PA 
residual (βTot = 0.02, P < 0.001) were illustrated. For DEF, 
the indirect effects mediated by Glo and LDH contrib-
uted to a distinct portion of the total effects on HD (8.5, 
7.3%), KDM residual (6.9, 1.1%), PA residual (5.3, 1.7%), 
and AL (8.4, 10.6%). Moreover, Glo and LDH-mediated 
indirect effects also contributed to the specific propor-
tions of the total effects of NFD on HD (18.0, -24.7%), 
KDM residual (8.7, -2.3%), and PA residual (21.0, -10.9%).

Associations of DEF and NFD with predicted age metrics 
stratified by the potential confounders
When conducting sensitivity analyses considering poten-
tial confounders, the associations of DEF with HD and 
PA residual and associations of DEF with KDM resid-
ual and PA residual differed according to age and daily 
energy intake, respectively (Pinteraction < 0.05) (Supple-
mentary Table 6—9). The associations between NFD and 
KDM residual and PA residual were similarly varying 
with age (Pinteraction < 0.05) (Supplementary Table 10—13).

Discussion
In this sizable, nationwide cross-sectional study of 
the representative American population, we demon-
strated for the first time the associations of circadian 
eating patterns (DEF and NFD) with estimated bio-
logical aging using predicted age metrics. Showing a 
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Table 1 Differences in the baseline characteristics of participants categorized by quintiles of DEF (n = 24,212)a

Daily eating frequency (DEF)

  Overall Q1 (≤ 3.0 times) Q2 (3.1—3.5 
times)

Q3 (3.6—4.0 
times)

Q4 (4.1—4.5 
times)

Q5 (≥ 4.6 times) P Ptest

N = 5180 N = 4262 N = 4544 N = 3891 N = 6335

Age, years 49.09 (48.85, 
49.33)

47.60 (47.06, 
48.14)

49.49 (48.90, 
50.08)

50.21 (49.65, 
50.77)

49.38 (48.79, 
49.97)

49.06 (48.62, 
49.49)

 < 0.001  < 0.001

Male, n (%) 11,751 (48.5) 2500 (48.3) 2082 (48.9) 2230 (49.1) 1870 (48.1) 3069 (48.4) 0.873 0.871

Non-Hispanic 
white, n (%)

11,171 (46.1) 2015 (38.9) 1832 (43.0) 2134 (47.0) 1860 (47.8) 3330 (52.6)  < 0.001 0.040

Body mass index, 
kg/m2

29.02 (28.93, 
29.10)

29.86 (29.66, 
30.05)

29.22 (29.01, 
29.42)

29.12 (28.92, 
29.31)

28.79 (28.58, 
29.00)

28.26 (28.11, 
28.42)

 < 0.001  < 0.001

Current smoking, 
n (%)

10,504 (43.4) 2245 (43.3) 1816 (42.6) 1954 (43.0) 1692 (43.5) 2797 (44.2)  < 0.001 0.081

Current drinking, 
n (%)

16,329 (67.4) 3232 (62.4) 2795 (65.6) 3107 (68.4) 2688 (69.1) 4507 (71.1)  < 0.001 0.001

Regular exercise, 
n (%)

8245 (34.1) 1576 (30.4) 1364 (32.0) 1520 (33.5) 1358 (34.9) 2427 (38.3)  < 0.001  < 0.001

Above high 
school, n (%)

12,116 (50.0) 2133 (41.2) 1960 (46.0) 2311 (50.9) 2096 (53.9) 3616 (57.1)  < 0.001  < 0.001

 > 55,000 annual 
household 
income, n (%)

8367 (34.6) 1525 (29.4) 1343 (31.5) 1520 (33.5) 1403 (36.1) 2576 (40.7)  < 0.001  < 0.001

Sleep duration, 
hours

7.29 (7.26, 7.32) 7.35 (7.26, 7.43) 7.28 (7.22, 7.34) 7.33 (7.25, 7.41) 7.23 (7.16, 7.31) 7.24 (7.17, 7.30) 0.113 0.054

Night shift work, 
n (%)

711 (2.9) 172 (3.3) 110 (2.6) 127 (2.8) 121 (3.1) 181 (2.9)  < 0.001  < 0.001

Daily energy 
intake, kcal/d

1992.76 (1983.76, 
2001.76)

1619.27 (1601.75, 
1636.79)

1841.20 (1821.70, 
1860.71)

1984.57 (1965.14, 
2004.00)

2116.15 (2094.87, 
2137.44)

2330.23 (2313.22, 
2347.23)

 < 0.001  < 0.001

Healthy eating 
index-2015

31.11 (31.00, 
31.22)

29.86 (29.63, 
30.09)

30.45 (30.20, 
30.70)

30.96 (30.71, 
31.21)

31.39 (31.12, 
31.67)

32.53 (32.31, 
32.74)

 < 0.001  < 0.001

Dietary supple-
ments use, n (%)

12,226 (50.5) 2151 (41.5) 2056 (48.2) 2293 (50.5) 2066 (53.1) 3660 (57.8)  < 0.001  < 0.001

Dietary data sur-
veyed on week-
end, n (%)

1147 (4.7) 285 (5.5) 192 (4.5) 208 (4.6) 202 (5.2) 260 (4.1) 0.005 0.106

Self-reported 
cancer, n (%)

2315 (9.6) 432 (8.3) 406 (9.5) 469 (10.3) 384 (9.9) 624 (9.9)  < 0.001  < 0.001

Self-reported 
hypertension, 
n (%)

8424 (34.8) 1802 (34.8) 1515 (35.5) 1675 (36.9) 1346 (34.6) 2086 (32.9)  < 0.001 0.288

Self-reported 
cardiovascular 
diseases, n (%)

2581 (10.7) 580 (11.2) 475 (11.1) 557 (12.3) 419 (10.8) 550 (8.7)  < 0.001  < 0.001

Self-reported 
diabetes, n (%)

2956 (12.2) 683 (13.2) 570 (13.4) 594 (13.1) 452 (11.6) 657 (10.4)  < 0.001 0.694

Daily eating fre-
quency, times

4.13 (4.12, 4.14) 2.73 (2.72, 2.74) 3.50 (3.50, 3.50) 4.00 (4.00, 4.00) 4.50 (4.50, 4.50) 5.57 (5.55, 5.59)  < 0.001  < 0.001

Nighttime fasting 
duration, hours

12.72 (12.69, 
12.76)

15.21 (15.14, 
15.28)

13.25 (13.19, 
13.31)

12.49 (12.44, 
12.55)

11.91 (11.84, 
11.97)

11.00 (10.95, 
11.05)

 < 0.001  < 0.001

Lactate dehydro-
genase, U/L

135.23 (134.80, 
135.66)

135.93 (134.93, 
136.92)

135.19 (134.21, 
136.17)

135.55 (134.47, 
136.62)

134.49 (133.53, 
135.45)

134.92 (134.07, 
135.77)

0.307 0.650

Globulin, g/dL 2.96 (2.95, 2.96) 3.02 (3.00, 3.03) 2.96 (2.95, 2.98) 2.96 (2.95, 2.97) 2.95 (2.93, 2.96) 2.91 (2.90, 2.92)  < 0.001  < 0.001

Homeostatic dys-
regulation

1.68 (1.68, 1.69) 1.76 (1.74, 1.78) 1.73 (1.71, 1.75) 1.70 (1.67, 1.72) 1.64 (1.62, 1.67) 1.61 (1.59, 1.63)  < 0.001  < 0.001

Klemera-Doubal 
method, years

41.98 (41.76, 
42.20)

41.82 (41.31, 
42.34)

42.65 (42.09, 
43.20)

42.91 (42.38, 
43.43)

41.91 (41.36, 
42.45)

41.04 (40.63, 
41.44)

 < 0.001 0.001
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higher DEF (≥ 4.6 times) was associated with lower 
predicted age metrics. Either NFD shorter than 10.0 
h or longer than 14.1 h were independently related to 
higher predicted age metrics. Furthermore, LDH and 
Glo partially mediated the impacts of DEF and NFD on 
biological aging. Sensitivity analyses revealed that the 

relationships differed according to age and daily energy 
intake.

The consistent results matched a previous study con-
ducted among healthy, normal-weight, middle-aged 
adults without caloric restriction, which found that sub-
jects consuming only one meal per day experienced 

Table 1 (continued)

Daily eating frequency (DEF)

  Overall Q1 (≤ 3.0 times) Q2 (3.1—3.5 
times)

Q3 (3.6—4.0 
times)

Q4 (4.1—4.5 
times)

Q5 (≥ 4.6 times) P Ptest

N = 5180 N = 4262 N = 4544 N = 3891 N = 6335

Klemera-Doubal 
method residual, 
years

0.00 (-0.10, 0.10) 1.34 (1.11, 1.57) 0.24 (-0.02, 0.49) -0.23 (-0.47, 0.01) -0.36 (-0.61, 
-0.11)

-0.88 (-1.06, 
-0.69)

 < 0.001  < 0.001

PhenoAge, years 48.33 (48.07, 
48.59)

47.46 (46.88, 
48.04)

48.96 (48.33, 
49.60)

49.49 (48.88, 
50.09)

48.41 (47.78, 
49.04)

47.73 (47.27, 
48.20)

 < 0.001  < 0.001

PhenoAge 
residual, years

0.01 (-0.05, 0.07) 0.72 (0.58, 0.86) 0.18 (0.04, 0.33) -0.07 (-0.21, 0.07) -0.20 (-0.35, 
-0.06)

-0.49 (-0.61, 
-0.38)

 < 0.001  < 0.001

Allostatic load 0.28 (0.28, 0.29) 0.30 (0.29, 0.30) 0.29 (0.28, 0.29) 0.29 (0.28, 0.29) 0.28 (0.28, 0.29) 0.27 (0.27, 0.27)  < 0.001  < 0.001
a Continuous variables were presented as mean (95% CI). Categorical variables were listed as N (%). And Ptest was the result of Bonfreni correction

Fig. 2 Forest plot of the associations of DEF and NFD with predicted age metrics. The adjustments included age, sex, race, NHANES cycle, BMI, 
smoking, drinking, exercise, education, income, sleep duration, shift work, daily energy intake, nutrient supplement use, HEI-2015, dietary data 
surveyed on weekend, self-reported cancer, CVD, hypertension, and diabetes. Models for DEF and NFD were additionally adjusted for NFD and DEF, 
respectively. Q, quintile
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significant increases in cardiovascular health markers 
[53]. Moreover, a prospective study of the representa-
tive American population demonstrated that DEF below 
3 times was independently related to 33% and 16% 
higher risks of CVD and all-cause death [25]. Addition-
ally, dietary behaviors featuring low daily energy intake 
may contribute to the observed relationships. In the pre-
sent research, it was observed that individuals with DEF 
below 3.0 times and lower daily energy intake had higher 
predicted age metrics. This might result from insuffi-
cient energy intake, preventing the body from obtaining 
adequate nutrients for effective cell repair, or an irregu-
lar secretion of insulin and other hormones, impacting 
the body’s metabolism, immune and so forth [54, 55]. As 

an example, interventional investigations have further 
revealed that regular meal consumption improved fast-
ing lipid, postprandial insulin profiles, and thermogen-
esis [56]. Our observation implied that even subjects with 
lower energy consumption should carefully consider the 
frequency and regularity to mitigate the risks of acceler-
ated aging.

The NFD is another important circadian eating behav-
ior besides DEF. Despite the consistent findings of both 
animal and human studies reporting beneficial health 
effects resulting from prolonged nighttime fasting, 
including anti-inflammation, weight loss, and improved 
metabolic diseases, this research has revealed a more 
intricate relationship [27, 57]. Particularly, either NFD 

Fig. 3 Smoothing curve for the associations of DEF and NFD with predicted age metrics. Multivariate linear regression models and RCS were 
performed with adjusting for age, sex, race, NHANES cycle, BMI, smoking, drinking, exercise, education, income, sleep duration, shift work, daily 
energy intake, nutrient supplement use, HEI-2015, dietary data surveyed on weekend, self-reported cancer, CVD, hypertension, and diabetes. 
Models for DEF and NFD were additionally adjusted for NFD and DEF, respectively. Examination of the linear or nonlinear relationship of the spline 
was conducted through the use of the analysis of variance (ANOVA). The solid black lines correspond to the exponential transformed central 
estimates, and the gray-shaded regions indicate the 95% confidence intervals

Fig. 4 Effects mediated by Glo and LDH on the associations of DEF and NFD with predicted age metrics. The results were presented 
as standardized regression coefficients after adjusting for the covariates in the full model of multivariate linear regression models. *P < 0.05, 
**P < 0.01, ***P < 0.001
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shorter than 10.0 or longer than 14.1 h were indepen-
dently related to higher predicted age metrics. These dis-
coveries implied that the health effects of altering NFD 
were subtle and not entirely straightforward, responding 
to certain findings from prior research. Shortened NFD 
often accompanies nighttime eating, which has been 
shown to be positively associated with metabolic syn-
drome and its components, cancer, and coronary heart 
disease [58–60]. These relationships could be attributed 
to the disturbances in rhythmic insulin release, poten-
tially serving as a fundamental mechanism behind them. 
A circadian network establishes daily feeding windows, 
largely aligning with the active phase, allowing synchro-
nization of brain and peripheral organs to feeding time 
through rhythmic cues from metabolic hormones, nutri-
ents, and neural inputs [12]. Typically, insulin secretion 
rhythmically increases during the day and decreases 
at night [61], but eating late at night may disturb this 
rhythm by directly triggering insulin release [58]. Mis-
aligned insulin signaling, as evidenced in animal and cel-
lular research, disturbed the circadian organization and 
clock gene expression, ultimately leading to metabolic 
disorders through elevated production of the PERIOD 
protein [62]. Additionally, our study found that longer 
NFD (≥ 14.1 h) was associated with higher predicted age 
metrics, while previous research showed the health ben-
efits from NFD longer than 15 h [29, 30]. However, it is 
crucial to contextualize these studies. Some highlight-
ing the health benefits of extended NFD have centered 
on subjects with metabolic dysfunction, normally with 
expert supervision and particular objectives, including 
weight reduction and glucose regulation, which could 
potentially account for the variations. Despite fasting’s 
potential to offer protection from disease on multiple 
occasions, a recent animal experiment demonstrated 
that extended fasting and subsequent refeeding had 
limitations, or at the very least, come with a cost [63]. In 
terms of mechanisms, over three thousand genes display 
a 12-h biological rhythm, controlling hormone homeo-
stasis, whose ebbs and flows are essential for the regula-
tion of metabolism and response to stresses [64]. Several 
research has indicated that prolonged NFD increased 
the circulating ghrelin during the night [65], which could 
be significant in the mechanism through which calorie 
restriction promotes longevity [66]. Moreover, fasting 
has been proven to significantly affect the immune sys-
tem. Recent research in both mice and humans suggested 
that extended fasting and subsequent refeeding changed 
the immune response to infection by reshaping the distri-
bution of leukocytes [67].

Another revelation was that LDH and Glo partially 
mediated the impacts of DEF and NFD on biological 
aging. LDH is a crucial enzyme for anaerobic glycolysis, 

and its expression increases with aging [68]. Experi-
ments with animals indicated that overexpressing 
LDH in the brain and skeletal muscle increased gly-
colysis and reduced lifespan [68, 69]. Corresponding 
to the increases in LDH and its encoding mRNA dur-
ing the dark period [70], glucose primarily affects tis-
sue TCA cycle metabolism indirectly (via circulating 
lactate) everywhere but the brain [22]. Globulin is a 
broad category of proteins with various functions, such 
as immunoglobulins, structural proteins, and hormone 
carriers. Available data indicates that levels of globu-
lin could serve as markers for inflammation and oxi-
dative stress, considering its involvement in repairing 
the extracellular matrix and regulating immunity [23]. 
Rats fed ad  libitum displayed diurnal fluctuations in 
urinary alpha2u-globulin (a subtype of globulin) excre-
tion, reaching peaks between 8 p.m. and 8 a.m., cor-
responding to the rat’s feeding cycle. Fasting induces 
a significant decrease in the synthesis of this protein, 
and prolonged fasting exacerbates this reduction, partly 
attributable to selective transcriptional suppression of 
its mRNA [24]. However, further mechanisms may link 
circadian dietary habits to biological aging, necessitat-
ing examination in future investigations.

The subgroup analyses specifically emphasized the 
relationships differed according to age and daily energy 
intake. This stresses the significance of fostering healthy 
eating habits among younger individuals, influenced 
by factors such as increased nutritional requirements, 
higher metabolic rate, and the enduring effects of 
unhealthy dietary habits [71].

The key strengths of this research included the sizable 
sample size that provided a representative depiction of 
the Americans, the utilization of various predicted age 
metrics, and comprehensive data on diverse covariates 
and clinical endpoints. However, it is imperative to rec-
ognize certain limitations when interpreting our results. 
Firstly, our study was performed with a cross-sectional 
methodology, wherein both circadian eating behaviors 
and AAs were examined at the start of the study. Some 
misclassification might be unavoidable, and any altera-
tions or continual dietary patterns could not be fully 
recorded. Restricted by the cross-sectional studies, the 
causation between DEF and NFD and accelerated aging 
could not be ascertained based on the present results. 
Additionally, DEF represents the frequency of eating 
occasions that combine both meals and snacks. Given 
this definition, clinical interpretation should be careful. 
Moreover, the lack of consecutive 24-h dietary informa-
tion made it necessary to determine NFD using the first 
and last time points, preventing the accurate estimation. 
Lastly, despite our efforts to adjust for potential con-
founders associated with circadian eating behaviors such 
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as night shift work and sleep duration, there remains the 
possibility of other unreported confounding factors.

Dietary modifications, as simple yet feasible interven-
tions, have been demonstrated to offer numerous health 
benefits [72]. Modifications in portion sizes and meal 
timings have become potent strategies to improve health 
and postpone the onset of diseases while decelerat-
ing aging [73, 74]. Our study also discovered that apart 
from dietary quantity and quality [32], both reduced 
DEF and shortening or lengthening NFD were indepen-
dently associated with accelerated aging. Currently, an 
increasing number of both domestic and foreign health 
management guidelines and dietary recommendations 
are strongly advocating to emphasize circadian eating 
behaviors [75]. Professionals are advised to take note of 
our latest discoveries concerning the potential benefits 
of regular eating habits on the aging process. Moreo-
ver, future research endeavors are supposed to focus on 
integrating dietary quantity, quality, meal frequency, and 
fasting duration to develop strategies for preventing, 
postponing, and treating age-related chronic diseases.

Conclusions
Results from this substantial nationwide cross-sectional 
study illustrated the associations between DEF below 3.0 
times and NFD less than 10.0 or more than 14.1 h and the 
predicted age metrics, with LDH and Glo acting as medi-
ators, especially notable in non-elderly populations. Sub-
sequent studies are essential to validate our discoveries, 
involving larger prospective cohort studies, diverse racial 
and ethnic demographics, and exploration of underlying 
mechanisms and causation of the associations between 
circadian eating behaviors and biological aging.
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