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Abstract

Background: Living in walkable neighborhoods may provide long-term cardio-metabolic health benefits to
residents. Little empirical research has examined the behavioral mechanisms in this relationship. In this longitudinal
study, we examined the potential mediating role of physical activity (baseline and 12-year change) in the
relationships of neighborhood walkability with 12-year changes in cardio-metabolic risk markers.

Methods: The Australian Diabetes, Obesity and Lifestyle study collected data from adults, initially aged 25+ years, in
1999–2000, 2004–05, and 2011–12. We used 12-year follow-up data from 2023 participants who did not change
their address during the study period. Outcomes were 12-year changes in waist circumference, weight, systolic and
diastolic blood pressure, fasting and 2-h postload plasma glucose, high-density lipoprotein cholesterol, and
triglycerides. A walkability index was calculated, using dwelling density, intersection density, and destination density,
within 1 km street-network buffers around participants’ homes. Spatial data for calculating these measures were
sourced around the second follow-up period. Physical activity was assessed by self-reported time spent in
moderate-to-vigorous physical activity (including walking). Multilevel models, adjusting for potential confounders,
were used to examine the total and indirect relationships. The joint-significance test was used to assess mediation.

Results: There was evidence for relationships of higher walkability with smaller increases in weight (P = 0.020),
systolic blood pressure (P < 0.001), and high-density lipoprotein cholesterol (P = 0.002); and, for relationships of
higher walkability with higher baseline physical activity (P = 0.020), which, in turn, related to smaller increases in
waist circumference (P = 0.006), weight (P = 0.020), and a greater increase in high-density lipoprotein cholesterol
(P = 0.005). There was no evidence for a relationship of a higher walkability with a change in physical activity during
the study period (P = 0.590).

Conclusions: Our mediation analysis has shown that the protective effects of walkable neighborhoods against
obesity risk may be in part attributable to higher baseline physical activity levels. However, there was no evidence
of mediation by increases in physical activity during the study period. Further research is needed to understand
other behavioral pathways between walkability and cardio-metabolic health, and to investigate any effects of
changes in walkability.
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Background
Due to the increasing global burden of cardio-metabolic
diseases, such as type 2 diabetes (T2D) and cardiovascu-
lar disease, urgent preventive action has been advocated
[1]. In addition to individual-level approaches to redu-
cing risk factors, greater attention is now being given to
community-level approaches that address the contextual
factors where people live [2]. A growing body of research
has examined the role of the built environment in
cardio-metabolic disease prevention [3–6]. A recent re-
view of longitudinal studies found that residents living in
higher walkability neighborhoods (characterized by high
residential density, mixed land use, and high street con-
nectivity) are less likely to develop obesity, T2D, and
hypertension over time, compared with those who live
in lower walkability neighborhoods [3]. Environmental
initiatives to reduce cardio-metabolic disease risk are
promising as they are likely to have sustained effects at
the community level [7].
It is important to identify behavioral pathways that

may underlie the relationships between the built envir-
onment and cardio-metabolic disease [3–7]. This could
inform the development of effective environmental and
policy initiatives for targeting chronic disease prevention
[7]. Physical activity is a strong candidate for mediating
these relationships. Neighborhood environmental attri-
butes including walkability are associated with residents’
physical activity levels [8–11], and regular participation
in physical activity reduces cardio-metabolic disease risk
[12–14]. However, existing studies examining the medi-
ating role of physical activity in the relationships be-
tween walkability and cardio-metabolic health have in
most part focused on cross-sectional associations with
obesity-related outcomes [15–17]. The findings of those
studies suggest indirect associations between walkability
and obesity-related outcomes through physical activity.
In order to further advance our understanding, it is im-
portant to examine how physical activity, which may
change over time, accounts for the long-term health
benefits of neighborhood walkability [3]. Further, it is
known that active lifestyles can be effective in improving
other cardio-metabolic health profiles (blood pressure,
blood glucose, and blood lipids), independent of their ef-
fects on obesity-related measures [18]. Thus, research
needs to further examine the potential mediating effects
of physical activity in the relationship of walkability with
multiple markers of cardio-metabolic disease.
Three longitudinal studies have examined the mediating

role of physical activity in relationships between walkabil-
ity and cardio-metabolic health outcomes [19–21]. Two
tested mediation by using the Barron and Kenny’s ap-
proach [22], examining the attenuation in the relationship
between walkability and cardio-metabolic health by com-
paring regression coefficients before and after adjusting

for physical activity [20, 21]. This approach, however, is
not in line with recent advances in methods of mediation
analysis [23, 24]. Indeed, tests of mediation based on the
Barron and Kenny’s approach have been found to provide
incorrect findings [25, 26]. Further, this approach relies on
the total effect (direct and through all possible mediating
pathways) of the exposure on the outcome being statisti-
cally significant in order to assess mediation (indirect) ef-
fects. However, it is now recognized that an indirect effect
of the exposure on the outcome through mediators can
exist even in the absence of a significant total effect (i.e.,
multiple opposite directional mediators exist and cancel
each other out) [23, 24]. One recommended way to test
mediating effects is to separately assess the effects of expo-
sures on mediators and the exposure-adjusted effects of
mediators on outcomes [23, 25]. An Australian study used
this method to assess the mediating role of physical activ-
ity measured at a single time point in the relationship of
walkability with 10-year changes in glycosylated
hemoglobin (HbA1c, a marker of cardio-metabolic dis-
ease) and found a partial mediation effect [19]. However,
the mediating role of physical activity change in the rela-
tionship of walkability with residents’ cardio-metabolic
health over time has not been examined.
The aims of our study were twofold: first, to exam-

ine the total effects of neighborhood walkability on
12-year changes of cardio-metabolic risk markers (es-
timating γ in Fig. 1a); second, to examine the indirect
effects of neighborhood walkability on changes in the
outcomes, mediated through physical activity at base-
line and changes in physical activity (estimating α and
β in Fig. 1b). We hypothesized that high walkability
would be protective against increasing cardio-
metabolic risk over time, and that those protective ef-
fects would be partly attributable to high baseline
levels and subsequent increases in physical activity.

Methods
Data source
Data were from the Australian Diabetes, Obesity and
Lifestyle Study (AusDiab), which is an Australian na-
tional longitudinal cohort study [27]. The primary aim
of AusDiab is to examine the prevalence and determi-
nants of obesity, diabetes, and cardiovascular disease.
AusDiab collected survey and biomedical data in three
waves: baseline in 1999–2000 (AusDiab1), first follow-up
in 2004–05 (AusDiab2), and second follow-up in 2011–
12 (AusDiab3). Details about the AusDiab1 study design
and recruitment procedures have been published else-
where [27]. Briefly, a two-stage stratified cluster sam-
pling design was used to select 42 study areas in the
metropolitan and regional cities of six states and the
Northern Territory. From each study area, a random
sample of adults (aged 25 years and over, with no
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physical or intellectual disabilities, and residing at their
addresses for 6 months or longer prior to the survey)
was selected. A study area consisted of contiguous Cen-
sus Collector District (CCD) geographical area units. A
CCD was the smallest area unit for the collection of
Census data at the time of AusDiab1, averaging approxi-
mately 225 dwellings [28]. In total, 11,247 participants
provided both survey and biomedical data in AusDiab1
(response rate = 55.3%). From the baseline cohort, 6400
(retention rate = 59.3%) and 4614 (retention rate =
44.6%) participants provided both survey and biomedical
data in AusDiab2 and AusDiab3, respectively. The Inter-
national Diabetes Institute and the Alfred Hospital Eth-
ics Committee approved the study (approval no. 39/11).
All participants provided written informed consent to
participate in the study.

Study participants
Our sample consisted of participants for whom data
were available over 12 years. There were 3968 who pro-
vided data at all three observation points, and 646 who
provided data for AusDiab1 and AusDiab3 only. Of
these, we excluded those whose addresses were not ac-
curately geocoded (N = 81) and who moved residence
during the study period (N = 2140). The reason for ex-
cluding movers was that it is unknown for how long
they were exposed to different neighborhoods between
observation points since their relocation date was not re-
corded. Further, we excluded 15 participants who re-
ported being pregnant during data collection; 151 who
reported that they had coronary heart disease or stroke
prior to or during the study period; 209 who reported
difficulties in walking more than 500 m at any of three

observation points; and 11 who were older than 78 years
at baseline [29] (numbers are not mutually exclusive).
The reason for excluding these subgroups was to reduce
possible reverse causality bias, as their health status may
have had stronger influences on their physical activity
behaviors during the study period [30]. The final analyt-
ical sample size was 2023.

Outcome variables
The outcomes examined were annual changes in cardio-
metabolic risk markers over 12 years: waist circumfer-
ence (WC), body weight (weight), systolic blood pressure
(SBP), diastolic blood pressure (DBP), fasting plasma
glucose (FPG), 2-h postload plasma glucose (2-h PG),
high-density lipoprotein cholesterol (HDL-C), and tri-
glycerides (TG). These markers were measured at local
data-collection centers at each time point. The details of
the measurement methods and instruments used were
described previously [27].

Exposure variables
The primary exposure variable of our study was a neigh-
borhood walkability index. The walkability index typic-
ally consists of measures of residential density, street
connectivity, and land use mix [31]. Given the difficulty
of obtaining nationally consistent fine-scale land use
data for calculating land use mix (entropy) measures in
Australia, Mavoa et al. [32] developed an alternative
measure using access to daily living destinations. Follow-
ing their method, we created a walkability index using
residential density, street connectivity, and daily living
destinations. They were calculated for each participant
within a 1 km street-network buffer (sausage-type, with

Fig. 1 Relationships of walkability with changes in cardio-metabolic risk markers (a), mediated through the baseline and the change in physical
activity (b)
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150 m radius from street centerline) around their resi-
dential location [33]. We chose a 1 km buffer to repre-
sent residential neighborhoods because this distance was
shown to be a typical distance within which most neigh-
borhood walking trips by adults take place [34]. In the
current study, it was not possible to obtain retrospective
spatial data, for calculating walkability, that corresponds
to the baseline of the study (1999–2000). We, thus,
sourced spatial data around the second follow-up period.
The details of each of the walkability components are
given below. ArcGIS v.10.6 (ESRI, Redlands) was used
for geographic information system (GIS) data processing
and spatial analysis.

Residential density
Residential density was defined as the number of dwell-
ings within the buffer divided by its area. The dwelling
count data in the mesh blocks (smallest census geo-
graphical units) were obtained from the Australian Bur-
eau of Statistics 2011 Census [35] to calculate an
individual buffer based dwelling density measure [36].

Street connectivity
We used intersection density as the measure of street
connectivity. Intersection density was defined as the
number of 4-or-more way intersections within the buffer
divided by its area, which has previously been shown to
be associated with walking in the context of Australia
[37]. Road network data from PSMA Australia’s 2012
Transport & Topography dataset were used to calculate
this measure.

Daily living destinations
Access to daily living destinations was measured as the
density (total count divided by buffer area) of different
types of neighborhood destinations to which residents
may travel daily/regularly: supermarkets, convenience
stores, and public transport stops. This destination-
based measure was developed in Australia to assess land
use diversity at the national scale, and found to be corre-
lated with an entropy measure of land use mix and asso-
ciated with walking for transport [32]. Axiom Business
Points data and Supermarkets data from Pitney Bowes
Ltd. (sourced in 2013) were used to obtain locations of
convenience stores and supermarkets. PSMA Australia’s
2012 Transport data were used to obtain locations of
railway stations for commuters. General Transit Feed
Specification online repository data (http://transitfeeds.
com, sourced in 2015) were used to obtain locations of
tram stops. Bus stops were not used in this study be-
cause their inclusion inflates this measure (about 90% of
participants had at least one bus stop and over 25% of
participants had 25+ bus stops within 1 km buffer).

Walkability index
A walkability index was calculated by standardizing (z-
score) the summed standardized measures of residential
density, intersections density, and daily living destina-
tions density.

Mediating variables
Participant’s self-reported time spent in physical activity
was used to obtain the two potential mediator variables.
At each wave of the AusDiab study, participants were
asked to report the time they spent in a range of physical
activities during the previous week using the Active
Australia Survey (AAS) [38, 39]. The items used were
shown in Additional file 1: Material S1. Total time (mins
per week) was calculated as the sum of the time spent in
walking (for recreation and transport), moderate-
intensity physical activity, plus double the time spent in
vigorous-intensity physical activity [39]. The AAS instru-
ment has been shown to have acceptable levels of reli-
ability and validity for the measure of weekly total
physical activity duration among adults [40, 41]. To
avoid measurement error due to over-reporting, we
truncated the weekly total physical activity duration at
1680 min (28 h) per week following the AAS procedure
[39]. Total time at AusDiab1 was used as the baseline
measure. To estimate the annual change in physical ac-
tivity, we calculated the 12-year change in physical activ-
ity geometrically, as shown in Additional file 1: Material
S2. This method allowed us to incorporate all three time
points in assessing the change in physical activity. This
is superior to a simpler method of subtracting the base-
line value from the 12-year follow-up value, which disre-
gards the 5-year follow-up value and assumes a constant
change throughout the study period.

Potential confounders
We included the following variables (assessed at base-
line) as potential confounders: gender, age, education,
marital status, employment status, household income,
household children status (having a child or children in
the household), and height (for weight only). Since a
change in participants’ socio-demographic status over
time may influence their long-term physical activity and
cardio-metabolic health profiles, we also included
changes (from baseline to wave 3) in marital status, em-
ployment status, household income, and household chil-
dren status as potential confounders of the relevant
longitudinal models. For instance, change in employ-
ment status was classified as: kept working, stopped
working, started working, or not working. Further,
hypertension medication use (for SBP and DBP only),
medication/insulin treatment for diabetes or family his-
tory of diabetes (for FPG and 2-h PG only), and choles-
terol medication use (for HDL-C and TG only) were
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included as potential confounders in the relevant
models. These variables are defined as binary variables
(yes: participant was on medication in at least one of the
three observation points; no: participant was not on
medication at any observation point). For area-level so-
cioeconomic status, we used the Index of Relative Socio-
economic Disadvantage (IRSD), which is a census-based
composite variable consisting of measures such as in-
come, education, employment, household structure, and
car ownership [42]. The 2011 IRSD scores correspond-
ing to the Australian Standard Geographical Classifica-
tion’s Statistical Local Area (SLA) units were used. For
the study areas that sat across multiple SLAs, the mean
IRSD value was employed (12 study areas sat across two
SLAs and one study area sat across three SLAs).

Statistical analyses
Calculating changes in cardio-metabolic risk markers
We used multilevel unconditional linear growth models
to estimate each participant’s annual change in cardio-
metabolic risk markers by utilizing measures at three ob-
servation points [43]. Briefly, for each risk marker, re-
peated measures (of individuals who were nested within
study sites) were modeled with the time at which the
corresponding measure was obtained as a predictor. We
used continuous time metrics: t = 0 for AusDiab1 (base-
line); t = 5 for AusDiab2 (5-year follow-up); and t = 12
for AusDiab3 (12-year follow-up). These multilevel
(three-level) growth models included random intercepts
at the participant and the study area level and random
slopes for time metrics at the participant level. Inclusion
of random intercepts for participants allowed those ob-
servations from the same participants (repeated mea-
sures) to be correlated, and inclusion of random
intercepts for study areas allowed those participants liv-
ing in the same areas (participants recruited from pre-
selected CCDs) to be correlated. Participant-specific ran-
dom intercept and random slope of time metric (corre-
sponding to participant’s linear trajectory line) estimated
the starting point and the annual change of the risk
marker, respectively [see Additional file 1: Material S2].
An unstructured covariance matrix was specified be-
tween participant-specific random intercepts and ran-
dom slopes to allow them to correlate. The point
estimate of the regression coefficient of time represents
the annual change for the average participant.

Examining the total effects
To examine the total effect of the walkability index on
changes in cardio-metabolic risk markers (corresponding
to γ in Fig. 1a), the above described multilevel linear
growth models were extended by adding the walkability
index and other potential confounders as participant-

level and area-level predictors (see Additional file 1: Ma-
terial S3 for further details) [44].

Testing mediation
To test mediation, we estimated regression coefficients α
and β in Fig. 1b. For α, we used a two-level generalized
linear mixed model with a Gamma distribution and log
link function to examine the relationship of the walkabil-
ity index with baseline physical activity (right-skewed);
and a two-level linear mixed model with a Normal dis-
tribution and identity link function to examine the rela-
tionship of the walkability index with changes in
physical activity (Normally distributed). In both models,
random intercepts were included at the study area level
to account for area-level clustering. The model for base-
line physical activity was adjusted for the baseline socio-
demographic variables only; while the model for change
in physical activity was adjusted for both baseline and
change in socio-demographic variables, and baseline
physical activity. For β, the above described multilevel
linear growth models to estimate the total effects were
extended by further adding the baseline and changes in
physical activity along with the walkability index and po-
tential confounders. To assess the statistical significance
of the mediating effect, we used the joint-significance
test [26], in which simultaneous significance of the re-
gression coefficients α and β provides evidence for medi-
ating effects.

Missing data and loss to follow-up
In multi-level linear growth models, for each risk marker
outcome variable, all participants with at least a baseline
measurement for the corresponding marker were in-
cluded in the analyses. Multilevel modeling of repeated
measures over time assumes missing at random (MAR)
mechanism for missing data, implying that missingness
can be ignored if all variables related to attrition are in-
cluded in the model [44].
Statistical analyses were performed in STATA (v.15.0)

and R (v.3.5.0).

Results
Table 1 shows the characteristics of the study sample.
The mean follow-up duration was 11.9 years (range: 11.0
to 12.4 years). The comparison of baseline characteristics
of those included in the current study (stayers), excluded
(movers), and who withdrew from the AusDiab study is
shown in Additional file 1: Table S1. Compared with
those who provided 12-years follow-up data, movers
were more likely to be younger and not living with a
partner, while drop-outs were more likely to be older,
less educated, had lower income levels, not working, not
living with a partner or children, had poorer health pro-
files and having lower physical activity levels at baseline.
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Table 2 shows descriptive statistics for the walkabil-
ity index and its components, and Pearson’s correl-
ation coefficients between each pair of them.
Correlation coefficients between walkability compo-
nents ranged from 0.4 to 0.6.

Table 3 shows the mean change from AusDiab1 to
AusDiab3 and the mean annual change (estimated from
the unconditional growth models) of each cardio-
metabolic risk marker. Overall, on average, participants
increased their WC, weight, blood pressure, and glucose
levels, but improved their lipid profiles over the 12-year
period. The mean (SD) weekly total physical activity dur-
ation at baseline was 5.0 (6.1) hours/week and its mean
change over the 12-year study period was 1.2 (9.3)
hours/week (i.e., increase).
Table 4 shows the results of regression models exam-

ining the total effects of walkability index on annual
changes in cardio-metabolic risk markers (γ regression
coefficients). After adjusting for potential confounders,
there was evidence for relationships of higher walkability
index with smaller annual increases in weight (P =
0.028), SBP (P < 0.001), and HDL-C (P = 0.002); and
there was also some weaker evidence for relationships of
higher walkability index with smaller annual increases in
WC (P = 0.092) and FPG (P = 0.053).
With regard to the associations of walkability index

with the baseline and the annual change in physical ac-
tivity (α coefficients), after adjusting for potential con-
founders, there was evidence for the relationship of
higher walkability index with higher baseline physical ac-
tivity (exp(α) [95% CI] = 1.09 [1.01, 1.16], P = 0.020); but
not with the annual change in physical activity (α [95%
CI] = 0.01 [− 0.03, 0.05] hours/week, P = 0.590).
Table 5 shows the results of regression models exam-

ining the effects of the baseline and the annual change
in physical activity on annual changes in cardio-
metabolic risk markers (β regression coefficients). After
adjusting for walkability index and other potential con-
founders, there was evidence for relationships of higher
baseline physical activity with smaller increases in WC
(P = 0.006), weight (P = 0.020), and a greater increase in
HDL-C (P = 0.005). In the corresponding regression
models, there was evidence for relationships of an in-
crease in physical activity related with smaller increases
in WC (P < 0.001), weight (P = 0.005), DBP (P = 0.050),
FPG (P = 0.019), TG (P = 0.004), and a greater increase
in HDL-C (P < 0.001).

Discussion
This study examined the total effects of neighborhood
walkability on cardio-metabolic risk changes over 12
years, and whether physical activity mediated these rela-
tionships. Below, we first discuss our findings on the
total effects, mediation by physical activity (baseline and
change), followed by limitations and strengths.

Total effects
For the total effect of walkability on cardio-metabolic
risk markers, we found evidence that higher walkability

Table 1 Baseline characteristics of study participants, AusDiab
study, 1999–2000, (N = 2023)

Baseline characteristics Means (SD) or
Percentages

Age, years 49.8 (10.2)

Gender, % Women 54.5

Education

% High school or less 33.1

% Technical or vocation 43.1

% Bachelor’s degree or more 23.8

Employment status

% Working 74.3

% Not working 25.1

% Others 0.6

Weekly household income

% Less than $600 27.4

% $600–1500 48.0

% > $1500 24.7

Marital status, % couple 86.1

Children in household, % yes 48.3

Cardio-metabolic risk markers

WC (cm) 88.7 (13.1)

Weight (kg) 75.5 (15.4)

SBP (mmHg) 127.0 (16.7)

DBP (mmHg) 70.4 (11.3)

FPG (mg/dL) 98.7 (17.6)

2-h PG (mg/dL) 107.3 (35.6)

HDL-C (mg/dL) 55.9 (14.6)

TG (mg/dL) 127.8 (87.4)

Total physical activity (hours/week) 5.0 (6.1)

Walking (hours/week) 2.1 (2.7)

Moderate-intensity physical activity (hours/week) 1.0 (2.7)

Vigorous-intensity physical activity (hours/week) 0.9 (2.0)

Medication use (reported at least at one wave)

For hypertension, % yes 32.1

For type 2 diabetes (including insulin), % yes 4.8

For high cholesterol, % yes 23.5

Family history of diabetes (pooled across waves), % yes 29.0

Index of Relative Socioeconomic Disadvantage (2011
Census)

1021.4 (58.6)

Abbreviations: WC Waist Circumference, SBP Systolic Blood Pressure, DBP
Diastolic Blood Pressure, FPG Fasting Plasma Glucose, 2-h PG 2-h Postload
Plasma Glucose, HDL-C High-Density Lipoprotein Cholesterol, TG Triglycerides
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index was related to smaller increases in weight and re-
lated to smaller increases in WC (weaker evidence).
These findings suggest that living in high walkable areas
may be protective against the development of obesity.
We observed that one standard deviation (SD) higher
walkability index was related to smaller annual weight
gain by 0.03 kg (Table 4). Considering that the mean an-
nual weight gain for this sample was 0.18 kg (Table 3),
the total effect of one SD higher walkability on residents’
weight gain was around 17%, which can be interpreted
as being a substantial effect at the population level [45].
A recent systematic review of longitudinal studies found
strong evidence for a protective effect of higher walkabil-
ity against the development of obesity [3]. Our study
thus contributes to this growing evidence base, which
suggests that initiatives to improve neighborhood walk-
ability could make an important contribution to redu-
cing the burden of obesity [46].
For blood pressure markers, we found that a higher

walkability index was related to smaller increases in SBP,
but not DBP. A recent study conducted in the UK also
reported similar findings [47]. Further, the finding on
the effect of higher walkability on SBP change was also
consistent with two studies conducted in the USA [48,

49]. For blood glucose markers, we found that higher
walkability index was related to smaller increases in
FPG, but not with 2-h PG. Other studies have also pro-
duced mixed findings for relationships of walkability
with changes in T2D risk markers [19, 48, 50]. The sys-
tematic review of longitudinal studies found strong evi-
dence for potential protective effects of higher
walkability against the development of hypertension and
T2D [3]. Our current findings partly support the benefi-
cial relationship of walkability with blood pressure and
blood glucose found in existing studies. For blood lipid
markers, we found that higher walkability index was re-
lated to a smaller increase in HDL-C, but not with TG.
Notably, the relationship between walkability and HDL-
C was in the unexpected direction (living in a high walk-
able neighborhood leading to poorer blood lipid pro-
files). This finding is, to some extent, consistent with a
previous longitudinal study conducted in the USA that
found a greater increase in TG for those who moved to
higher walkability neighborhoods from lower walkability
neighborhoods [50]. A recent systematic review of
mostly cross-sectional studies also found less favorable
blood lipid levels among urban residents as compared
with rural residents [51]. These inconsistent or

Table 2 Descriptive statistics for walkability and its components within participants’ 1 km street-network residential buffers, AusDiab
study, 1999–2012, (N = 2023)

Walkability
components

Mean (SD) Min Q1 Median Q3 Max Correlation Matrix

Res. density Int.density Des.density Walkability

Res. density a 7.1 (3.6) 0.1 4.5 6.6 9.4 26.2 1.0 0.6* 0.4* 0.8*

Int. density b 4.0 (4.5) 0.0 0.8 2.3 5.2 20.7 1.0 0.4* 0.8*

Des. density c 1.5 (1.5) 0.0 0.0 1.2 2.3 8.1 1.0 0.7*

Walkability 0.0 (1.0) −1.6 −0.7 − 0.2 0.6 5.1 1.0

Abbreviations: Res Residential, Int Intersections, Des Destinations;
*P < 0.001
aNumber of dwellings/hectare within 1 km of each residence
bNumber of 4-way intersections/km2 within 1 km of each residence
cNumber of daily living destinations/km2 within 1 km of each residence

Table 3 Mean changes cardiometabolic risk markers, AusDiab study, 1999–2012, (N = 2023)

Cardiometabolic
Risk markers

No of participants included in models Mean (95% CI) change from AusDiab1 to 3 Meana (95% CI) annual change

WC (cm) 2023 5.35 (5.02, 5.67) 0.45 (0.42, 0.47)

Weight (kg) 2019 2.25 (1.95, 2.54) 0.18 (0.16, 0.21)

SBP (mmHg) 2019 3.00 (2.25, 3.74) 0.30 (0.24, 0.36)

DBP (mmHg) 2019 2.20 (1.66, 2.74) 0.20 (0.16, 0.25)

FPG (mg/dL) 2023 −0.08 (− 0.93, 0.77) 0.01 (− 0.06, 0.08)

2-h PG (mg/dL) 1997 1.97 (0.39, 3.56) 0.15 (0.02, 0.29)

HDL-C (mg/dL) 2023 3.58 (3.12, 4.05) 0.31 (0.27, 0.35)

TG (mg/dL) 2023 −10.24 (− 13.54, −6.94) −0.87 (− 1.15, − 0.6)

Abbreviations: WC Waist Circumference, SBP Systolic Blood Pressure, DBP Diastolic Blood Pressure, FPG Fasting Plasma Glucose, 2-h PG 2-h Postload Plasma
Glucose, HDL-C High-Density Lipoprotein Cholesterol, TG Triglycerides
aEstimated from the unconditional growth model

Chandrabose et al. International Journal of Behavioral Nutrition and Physical Activity           (2019) 16:86 Page 7 of 11



unexpected findings may be due to other potentially
relevant exposures not measured in this study, such
as easier access to unhealthy food outlets [52], which
may have some detrimental effects on blood pressure,
glucose, and lipids. Future research might consider
examining the spatial co-location of walkability and
other environmental exposures to investigate their
independent and joint relationships with cardio-
metabolic disease risk.

Mediation by baseline physical activity
Based on the joint-significance test, we found evi-
dence suggesting that baseline physical activity medi-
ates the relationship between walkability and changes
in obesity-related measures (i.e., higher walkability
index was related with higher baseline physical activ-
ity, which predicted smaller annual increases in WC
and weight). This finding is consistent with previous

cross-sectional studies on mediation by physical activ-
ity in the relationship between walkability and obesity
[15–17], using mediation analysis methods similar to
those used in this study. However, our study extends
the previous findings by showing the mediating role
of physical activity in the long-term protective effect
of higher walkability against obesity. The mediation
analysis also found that higher baseline physical activ-
ity, which was related to higher walkability, had a
beneficial impact on cholesterol. This is contradictory to
the observed total effect, where higher walkability led to ad-
verse cholesterol changes over time. It is possible that
higher walkability itself has positive effects on blood lipids
through facilitating physical activity. But, as discussed
above, walkable neighborhoods may also provide easy ac-
cess to unhealthy food outlets [52]. The detrimental effects
of greater energy intake may have outweighed the benefits
provided by greater physical activity. This warrants further

Table 4 Total effects of walkability index on annual changes in cardio-metabolic risk markers, AusDiab study, 1999–2012, (N = 2023)

Cardio-metabolic risk marker γ- regression coefficients (95%CI) P-value

WC (cm) −0.02 (− 0.05, 0.00) 0.092

Weight (kg) −0.03 (− 0.05, 0.00) 0.028

SBP (mmHg) −0.15 (− 0.21, − 0.08) < 0.001

DBP (mmHg) 0.01 (− 0.03, 0.05) 0.552

FPG (mg/dL) −0.06 (− 0.13, 0.00) 0.053

2-h PG (mg/dL) 0.01 (− 0.11, 0.14) 0.826

HDL-C (mg/dL) −0.06 (− 0.10, − 0.02) 0.002

TG (mg/dL) 0.04 (− 0.18, 0.26) 0.702

Abbreviations: WC Waist Circumference, SBP Systolic Blood Pressure, DBP Diastolic Blood Pressure, FPG Fasting Plasma Glucose, 2-h PG 2-h Postload Plasma
Glucose, HDL-C High-Density Lipoprotein Cholesterol, TG Triglycerides
Models adjusted for baseline age, gender, education, baseline work status, baseline household income, baseline marital status, baseline household children status,
changes in socio-demographic factors (work status, household income, marital status, and household children status), height (only for weight), hypertension medication
use (for SBP and DBP only), treatment for diabetes and family history of diabetes (for FPG and 2-h PG only), cholesterol medication use (for HDL-C and TG only), and
Index of Relative Socio-economic Disadvantage. Regression coefficients correspond to 1 SD increment in walkability index. P-value < 0.05 in boldface

Table 5 Relationships of the baseline and the annual change in physical activity with annual changes in cardio-metabolic risk
markers, adjusted for walkability index, AusDiab study, 1999–2012 (N = 2023)

Cardio-
metabolic risk
markers

β− regression coefficients

Baseline physical activity (hours/week) Change in physical activity (hours/week)

β (95%CI) P-value β (95%CI) P-value

WC (cm) −0.008 (− 0.014, − 0.002) 0.006 −0.096 (− 0.139, − 0.053) < 0.001

Weight (kg) −0.006 (− 0.011, − 0.001) 0.020 −0.056 (− 0.094, − 0.017) 0.005

SBP (mmHg) −0.001 (− 0.013, 0.012) 0.926 0.023 (− 0.070, 0.116) 0.624

DBP (mmHg) −0.004 (− 0.011, 0.004) 0.372 −0.058 (− 0.116, 0.000) 0.050

FPG (mg/dL) −0.005 (− 0.016, 0.006) 0.382 −0.099 (− 0.181, − 0.016) 0.019

2-h PG (mg/dL) −0.011 (− 0.038, 0.015) 0.397 −0.155 (− 0.354, 0.044) 0.126

HDL-C (mg/dL) 0.012 (0.004, 0.020) 0.005 0.158 (0.095, 0.221) < 0.001

TG (mg/dL) −0.028 (− 0.074, 0.018) 0.236 − 0.516 (− 0.863, − 0.169) 0.004

Abbreviations: WCWaist Circumference, SBP Systolic Blood Pressure, DBP Diastolic Blood Pressure, FPG Fasting Plasma Glucose, 2-h PG 2-h Postload Plasma Glucose,
HDL-C High-Density Lipoprotein Cholesterol, TG Triglycerides. Models adjusted for walkability index, baseline age, gender, education, baseline work status, baseline
household income, baseline marital status, baseline household children status, changes in lifestyle factors (work status, household income, marital status, and household
children status), height (only for weight), hypertension medication use (for SBP and DBP only), treatment for diabetes and family history of diabetes (for FPG and 2-h PG
only), cholesterol medication use (for HDL-C and TG only), and Index of Relative Socio-economic Disadvantage. P-value < 0.05 in boldface
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investigation. Research incorporating multiple relevant
health behaviors is needed to understand the seemingly
contradictory findings.
Notably, no evidence was found for relationships of

physical activity measured at baseline with changes in
blood pressure, blood glucose, and triglycerides. A pos-
sible explanation may be that in the context that phys-
ical activity changes over a longer follow-up period, the
baseline physical activity may fail to predict the long-
term beneficial health gains [53–55].

Mediation by changes in physical activity
We also examined whether changes in physical activ-
ity levels over time may be a factor mediating the re-
lationships between neighborhood walkability and
changes in cardio-metabolic risk. Although physical
activity changes were related to changes in most of
the risk markers examined in the study, walkability
(measure at a single time point) was not related to
physical activity changes. Thus, according to the
joint-significance test, physical activity changes may
not be considered as a mechanism through which
neighborhood walkability influences cardio-metabolic
risk over time. A recent review on the longitudinal
relationships of built environments with physical ac-
tivity reported that environmental attributes measured
at one point of time may not contribute to changes
in physical activity [10]. People’s behavior choice is
known to be habitual, often triggered by environmen-
tal cues [56]. Given that this study focused on partici-
pants who stayed in the same residence, it is possible
that increasing physical activity may require additional
non-environmental stimuli, such as advice from health
professionals, new incentives to use active modes of
travel, and social pressure to exercise. Natural experi-
mental studies examining changes in environments
(due to relocation or environmental modification) are
needed to explore the mediating role of physical ac-
tivity changes in the environmental impacts on
cardio-metabolic health. It is possible that the behav-
ioral changes observed are attributable to environ-
mental changes, which we could not measure in this
study.

Limitations and strengths
Limitations of this study include the use of self-
reported physical activity measures: measurement
error may have resulted in incorrect estimations. The
association observed between walkability and baseline
physical activity may be confounded by self-selection
of neighborhoods [57]. Neighborhood walkability is
more closely related to transport-related walking [58],
which is typically lower in intensity than exercise.
However, inclusion of leisure-time physical activity

and exercise may have contributed to weakening the
relationship between walkability and total physical ac-
tivity. Future research needs to examine the role of
physical activity in specific domains and intensity
levels. The attrition rate was relatively high due to
the longer follow-up period (55%). Under the assump-
tion of MAR mechanism, up to 60% loss to follow-up
was less likely to produce biased estimates of effects
[59]. However, if attrition was “missing not at ran-
dom” (i.e., loss to follow-up depends on the outcome
variable), the estimated effects may have been biased
and led to invalid conclusions [59]. We used a walk-
ability index that was created based on geospatial data
sourced around the time of AusDiab3. This was due
to the unavailability of relevant data for the baseline
period (1999–2000). It is possible that some study
areas may have changed little, while others may have
undergone further development during the study
period [60]. Future longitudinal research may have to
consider how baseline and change in walkability can
influence residents’ cardio-metabolic risk.
Strengths of our study include sufficiently large sample

size, longitudinal design with a 12-year follow-up period
(three measurement points), the use of objective mea-
sures of cardio-metabolic risk markers, the use of GIS-
based walkability measure, and a broad range of study
areas from multiple urban settings across Australia. The
study tested mediation following recent advancements in
mediation analysis methods. We also used a sophisti-
cated statistical method, multilevel growth model, in
analyzing the complex data (repeated measures within
individuals, who were recruited using stratified cluster
sampling).

Conclusions
Our findings suggest that neighborhood environments
designed to encourage residents’ physical activity may
help reduce the risk of obesity and related disease
over time. Improving neighborhood walkability may
be a potential strategy to enhance population health
by encouraging more physical activity. Further studies
are recommended to examine specific environmental
attributes that may contribute to reducing cardio-
metabolic risk (not only obesity but also hypertension,
hyperglycemia, and hyperlipidemia) through physical
activity. Such understanding would support policy-
makers and practitioners in urban design and plan-
ning to develop healthier neighborhoods. Our study
found an adverse effect of high walkability on blood
lipids, suggesting the presence of other unhealthy ex-
posures in high walkable areas. Research is needed to
examine other behavioral pathways (e.g. diet) through
which walkability may influence residents’ cardio-
metabolic health.
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