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Abstract

Background: Research has suggested the positive impact of physical activity on health and wellbeing in older age,
yet few studies have investigated the associations between physical activity and heterogeneous trajectories of
healthy ageing. We aimed to identify how physical activity can influence healthy ageing trajectories using a
harmonised dataset of eight ageing cohorts across the world.

Methods: Based on a harmonised dataset of eight ageing cohorts in Australia, USA, Mexico, Japan, South Korea,
and Europe, comprising 130,521 older adults (Mage = 62.81, SDage = 10.06) followed-up up to 10 years (Mrojiow-up =
547, SDgojiow-up = 3.22), we employed growth mixture modelling to identify latent classes of people with different
trajectories of healthy ageing scores, which incorporated 41 items of health and functioning. Multinomial logistic
regression modelling was used to investigate the associations between physical activity and different types of
trajectories adjusting for sociodemographic characteristics and other lifestyle behaviours.

Results: Three latent classes of healthy ageing trajectories were identified: two with stable trajectories with high
(71.4%) or low (25.2%) starting points and one with a high starting point but a fast decline over time (3.4%).
Engagement in any level of physical activity was associated with decreased odds of being in the low stable (OR:
0.18; 95% Cl: 0.17, 0.19) and fast decline trajectories groups (OR: 0.44; 95% Cl: 0.39, 0.50) compared to the high
stable trajectory group. These results were replicated with alternative physical activity operationalisations, as well as
in sensitivity analyses using reduced samples.

Conclusions: Our findings suggest a positive impact of physical activity on healthy ageing, attenuating declines in
health and functioning. Physical activity promotion should be a key focus of healthy ageing policies to prevent
disability and fast deterioration in health.
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Background

Ageing has been associated with an increased risk of
non-communicable diseases, frailty [1] and disability [2].
To address economic, health and social care burdens re-
lated to these adverse health conditions, maintenance of
good health in later life has become a key priority for
ageing research and health policy planning. In this re-
gard, the latest World Report on Ageing and Health by
the World Health Organization (WHO) [3] has provided
a framework for the study and promotion of healthy age-
ing. In this report, WHO defined healthy ageing as the
“process of developing and maintaining the functional
ability that will enable older people to do the things that
matter to them”, and this process is not homogeneous in
the population [4].

Physical activity promotion has been suggested to re-
duce the risk of developing non-communicable diseases
[5] and the healthcare expenditure [6], and to increase
the satisfaction with one’s life and with the ageing
process [7]. Evidence from epidemiological studies has
also shown that physical activity is strongly associated
with healthier ageing trajectories [8, 9], better cognitive
function trajectories [10] and improved frailty trajector-
ies [11]. In particular, a recent meta-analysis [12] has
summarised the findings from 23 longitudinal studies fo-
cusing on the associations between physical activity and
healthy ageing and suggested that physically active older
adults (defined by any levels of exercises or activities)
had almost 40% increased odds of experiencing healthy
ageing compared to their non-physically active counter-
parts. However, there was a high heterogeneity in the
conceptualisation of healthy ageing, with different stud-
ies using different combinations of variables related to
physical performance (functioning and disability), dis-
eases, mental health, and survival to a specific age [12].
Moreover, most existing studies mainly focused on
population average trajectories of healthy ageing and did
not consider the existence of subgroups in the older
population that may exhibit different trajectories than
the majority of it [3]. This might be due to limited sam-
ple size and statistical power to detect subgroups of dif-
ferent trajectories within a single study population. To
provide novel insights on how physical activity can influ-
ence trajectories of healthy ageing in different popula-
tions, it is necessary to incorporate data from multiple
cohort studies and use comparable measures for physical
activity and healthy ageing.

In this study, we aim to investigate the impact of phys-
ical activity on trajectories of healthy ageing, while tak-
ing into account sociodemographic factors and other
correlated lifestyle factors, by using a harmonised dataset
of eight longitudinal cohort studies across the world.
Given the strength of large sample sizes, we identified
various types of healthy ageing trajectories in the study
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population and examined their relationships with differ-
ent levels of physical activity.

Methods

Study sample

This study was based on the Ageing Trajectories of
Health: Longitudinal Opportunities and Synergies
(ATHLOS) project (http://athlosproject.eu/). The aim of
the ATHLOS project was to harmonise data from 17
international ageing cohort studies [13] and to investi-
gate trajectories of healthy ageing and their potential de-
terminants in different older populations. Data
harmonisation is a technique where data from different
studies and with different format are transformed and
merged together in order to produce one cohesive data-
set. Bringing together 17 ageing cohorts across the
world, the ATHLOS harmonised dataset highlights sev-
eral advantages of data harmonisation: first, it allows re-
searchers to increase the size of the study population
and hence the statistical power of the analyses; second, it
enables the investigation of those trajectories and any
potential determinants independently from the older
adults’ settings and backgrounds while adjusting the ana-
lyses for differences in the source of the data, thus pro-
viding more generalisable evidence. The ATHLOS
consortium followed the Maelstrom Research guidelines
[14]. Harmonisation of variables across studies was
based on an iterative process of consensus of experts,
which is transparently documented and publicly avail-
able harmonisation reports (https://github.com/athlos-
project/athlos-project.github.io/). Further details on the
included cohorts and the harmonised variables is also
available in the cohort profile of the ATHLOS project
[13]. To carry out longitudinal analyses and identify dif-
ferent trajectories of healthy ageing, we focused on co-
horts with three or more available waves. This included
the Australian Longitudinal Study of Ageing (ALSA), the
English Longitudinal Study of Ageing (ELSA), the Study
on Cardiovascular Health, Nutrition and Frailty in Older
Adults in Spain (ENRICA), the Health and Retirement
Study (HRS), the Japanese Study of Ageing and Retire-
ment (JSTAR), the Korean Longitudinal Study of Ageing
(KLOSA), the Mexican Health and Aging Study (MHAS)
and the Survey of Health Ageing and Retirement in Eur-
ope (SHARE). In the present study, we excluded partici-
pants with information on health only at a single time
point. The analytic sample comprised 130,521 individ-
uals from 26 countries (ie. Australia, Austria, Belgium,
Czech Republic, Denmark, Estonia, France, Germany,
Greece, Hungary, Ireland, Israel, Italy, Japan,
Luxembourg, Mexico, Netherlands, Poland, Portugal,
Slovenia, South Korea, Spain, Sweden, Switzerland,
United Kingdom, and USA), whereas the excluded sam-
ple comprised 78,279 individuals.
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Measures

Healthy ageing score

Based on the WHO framework healthy ageing [3, 15],
the ATHLOS healthy ageing score was constructed by
using a two-parameter logistic item response theory
(IRT) model with 41 items related to intrinsic capacity
and functional ability (see Table S1, Supplementary Ma-
terial). Heterogeneities in the cohort-specific datasets
were analysed and addressed to obtain the common
scale. The IRT model converged successfully with an ex-
cellent fit (RMSEA =0.03, TLI=0.99, and CFI=0.99),
and had a marginal reliability of 0.83. The estimated la-
tent scores obtained for each participant at each time
point were rescaled to a range between 0 and 100, with
higher numbers indicating better health status.

Physical activity

Two harmonised variables were used to assess physical
activity at baseline: frequency of vigorous exercise and
frequency of less vigorous exercise throughout the week
(in days). Both variables had five categories (never, once
per week, 2/3 times/days per week, 4-5 times/days per
week, and 6-7 times/days per week) that were recoded
from the original variables in which participants were
asked for the number/frequency of “vigor sessions”
(ALSA), “vigorous physical activities” (HRS), “strenuous
activity” (JSTAR), “exercise” (KLOSA), or “sports or ac-
tivities that are vigorous” (SHARE), regarding vigorous
exercise; or “less vigor sessions” (ALSA), “light physical
activities” (HRS), “light exercise” (JSTAR), or “activities
requiring a moderate level of energy” (SHARE), regard-
ing less vigorous exercise. The last two categories of the
harmonised variables were grouped into 4+ times/days
per week in this study. As not all included studies had
this information, we created an aggregated variable of
physical activity (yes/no) to minimise missingness. To
create the latter variable, we considered the following
harmonised questions (the corresponding response op-
tions appear between parentheses): level of physical ac-
tivity (high, fair, low, not at all), frequency of vigorous
and less vigorous exercise (never, once per week, 2/3
times/days per week, 4+ times/days per week), engage-
ment in vigorous exercise during the last 2 weeks (yes,
no), frequency of vigorous exercise activities in the last
2 weeks (number), and time spent doing vigorous exer-
cise in the last 2 weeks (in minutes). Participants were
categorised as physically active if at least one of the fol-
lowing criteria was met: had “high” or “fair” level of
physical activity; engaged in less vigorous or more vigor-
ous exercise 2+ times per week or more; engaged in vig-
orous exercise (either with a “yes” to the frequency
question, or with an answer different from zero to the
question on the time spent doing vigorous exercise), or
had 5 or more time vigorously exercised in the last 2
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weeks. The presence of these different questions by
study is shown in Table S2 (Supplementary Material).

Covariates

Covariates included age, gender, study, education,
wealth, smoking and alcohol consumption. Education
was categorised into three groups (primary or less, sec-
ondary and tertiary education) based on qualification.
Wealth was measured using income and financial infor-
mation and divided into quintiles (1st: least) within each
cohort. As in the case of physical activity, we harmo-
nised measures of alcohol consumption and smoking
that allowed the least amount missing data across stud-
ies. Thus, we considered if participants reported ever
having smoked or consumed alcohol either at baseline
or any of the follow-up waves.

Statistical analyses

To investigate the heterogeneity in the longitudinal tra-
jectories of health, we employed the framework of
growth mixture modelling (GMM) [16], which allows
identifying unobserved groups (latent classes) of individ-
uals who exhibit different patterns of health change over
time. Since most cohorts had an investigation period up
to 10years and carried out follow-up waves every 2
years, here we focused on the first 10 years of follow-up
and built trajectories by biennial intervals (year 0, 2, 4, 6,
8 and 10). Hence, mean elapsed time across waves was
2 years (variance is not available).

Following Ram and Grimm indications [16], we per-
formed a single-class model (ie. latent growth curve
model) to find the best representation of change in the
overall sample (linear or quadratic change). We used the
best fitting model [lower Bayesian Information Criterion
(BIC)] as baseline model against which we compared
subsequent models with different number of latent clas-
ses, ranging from two to five. We computed these
models considering either linear or quadratic change. To
decide on the final number of latent classes (i.e. trajec-
tories), we employed the Bayesian Information Criterion
(BIC), the sample-size adjusted BIC (SABIC), entropy
values, the Lo-Mendel-Rubin likelihood ratio test (LMR-
LRT), and the sample size of the smallest class (no less
than 1% of the total sample in any class) [17, 18]. The
entropy of the model was prioritised as selection criteria
in order to optimise the separation between the classes
[16]. The models were estimated using maximum likeli-
hood with errors robust to non-normality and non-
independence of observations (MLR) [19], and missing
data were assumed to be missing at random (MAR).
Moreover, we used 500 random sets of starting values
for the parameters, along with 250 final optimisations, to
prevent the models from converging on a local solution.
In order to balance the flexibility of the models with the
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estimation ability, residual variances and covariances of
the growth parameters were estimated but constrained
to be equal across latent classes to avoid estimation
problems. Alternative specifications of the within-class
heterogeneity such as Latent Class Growth Analysis, in
which within-class heterogeneity is constrained to be
zero, were not considered due to their inability to reflect
the expected individual heterogeneity in the healthy age-
ing process [3, 4].

Once the model was selected, we used a three-step
approach to estimate the association of the three
physical activity variables (i.e. aggregated physical ac-
tivity, frequency of vigorous exercise, and frequency
of less vigorous exercise) with each latent class. In
this approach, 1) the latent class model is estimated a
priori without accounting for the predictor variables;
2) observations are then assigned to the most likely
class using the latent class posterior distribution ob-
tained in step 1; and 3) a new model is then esti-
mated in order to assess the impact of the predictor
variables on the class membership, fixing the meas-
urement error to the values obtained in step 2 [20,
21]. This procedure accounts for misclassification in
the second step, and the error assignments based on
the highest posterior probabilities are reduced. All
multinomial logistic regression models were adjusted
for other lifestyle behaviours (i.e. ever smoking and
drinking), as well as for baseline age, gender, study
(i.e. ALSA, ELSA, ENRICA, HRS, JSTAR, KLOSA,
MHAS, and SHARE), within-country household
wealth quintile (Ist and 2nd quintiles vs the rest),
and education level (ie. primary or less than primary,
secondary, and tertiary). In these models, participants
with missing data in any of the covariates were ex-
cluded from the analyses.

Since some studies did not have information on the
frequency of vigorous (i.e. ELSA, ENRICA, and
MHAS) or less vigorous exercise (i.e. ELSA, ENRICA,
KLOSA, and MHAS), we performed a set of sensitiv-
ity analyses to investigate the robustness of our find-
ings. In these sensitivity analyses, we performed the
selected GMM model in two reduced samples (sensi-
tivity analysis A: studies with information on vigorous
exercise; sensitivity analysis B: studies with informa-
tion on less vigorous exercise) and checked whether
the results regarding the trajectories found and their
relationship with physical activity were replicated. The
Guidelines for Reporting on Latent Trajectory Studies
[22] were used, and the checklist is included in the
Table S3 (Supplementary Material). Data manage-
ment and descriptive analyses were performed using
Stata SE 14.2, whereas GMM models were performed
in Mplus 8.1. The code is available from the corre-
sponding author upon request.
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Results

Trajectories of healthy ageing

A total of 130,521 participants had information in at
least two measurement points. The average number of
observations was 3.19 (SD =1.39), and the mean dur-
ation of the follow-up was 5.47 years (SD = 3.22). Table 1
summarises characteristics of the analytic and excluded
samples at baseline. Although some differences across
included and excluded samples achieved statistically sig-
nificance (to be expected due to the large sample size),
the only meaningful effect size was found in the study
variable, where SHARE had a higher proportion of ex-
cluded cases due to single observations from the refresh
cohorts. Regarding the analytic sample, mean scores on
health by years of follow-up were 70.21 (SD =16.46,
skewness = — 0.41, kurtosis = 2.70) for baseline, 69.02
(SD=17.30, skewness=-0.44, kurtosis=2.77) for 2
years, 68.69 (SD=17.53, skewness=-0.42, kurtosis =
2.81) for 4vyears, 67.25 (SD=17.83, skewness=-0.33,
kurtosis = 2.74) for 6 years, 66.99 (SD = 18.45, skewness =
-0.31, kurtosis=2.50) for 8years, and 65.78 (SD=
18.43, skewness = — 0.27, kurtosis = 2.50) for 10 years.

Table 2 provides the BIC, SABIC, adjusted LMR-LRT
results, and entropy values for the one to five latent clas-
ses models. Models allowing for quadratic change
showed better fit than those only allowing for linear
change. The three-class solution with quadratic growth
term showed the highest entropy (0.72). The trajectories
resulting from all these models are depicted in Figures
S1, S2, S3, S4, S5, S6, S7, S8, S9 (Supplementary Ma-
terial). Systematically, the models with three or more
classes showed the existence of a subgroup comprising
around 3—-4% of the population displaying a high starting
point and a fast decline over time. Increasing the num-
ber of classes beyond three resulted on spliting the
remaining classes, displaying a relatively stable trajectory,
into additional subgroups with different starting points
but parallel trajectories. The three-class model with
quadratic growth was selected as the optimal solution
due to its higher entropy.

The trajectories resulting from the selected model
are depicted in Fig. 1. Latent class groups were
named according to their trajectory patterns. Latent
class 3 comprised the majority of the population
(green line, 71.4%), displaying a high stable level of
health throughout the whole period (high stable). Par-
ticipants in latent class 1 (blue line, 25.2%) displayed
a low level of health in the beginning and almost no
change across the follow-ups (low stable). Participants
in latent class 2 (red line, 3.4%) showed a baseline
level of health similar to the high stable class, but a
severe deterioration over time (fast decline). The spe-
cific estimates for the model and each of the classes
are displayed in Table 3 (upper section).
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Table 1 Baseline characteristics of analytic and excluded samples
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Analytic sample Excluded sample t/ ¥ Effect size
(N =130,521) (N =78,279)

Age, M (SD) 62.80 (10.06) 62.31 (11.68) 10.29%** 0.05
Gender, N (%) Female 72,312 (55.40) 40632 (51.91) 032 0.001

Male 58,063 (44.49) 32,453 (41.46)

Missing 146 (0.11) 5194 (6.64) - -
Wealth, N (%) 1st quintile 26,406 (20.23) 13,702 (17.50) 266.04*** 0.04

2nd quintile 25419 (1948) 13,064 (16.69)

3rd quintile 24,760 (18.97) 13,663 (17.45)

4th quintile 24,040 (18.42) 14,162 (18.09)

5th quintile 23,657 (18.13) 14,892 (19.02)

Missing 6239 (4.78) 8796 (11.24) - -
Education, N (%) Less than primary/primary 43,469 (33.3) 22,181 (28.34) 488.55%** 0.05

Secondary 62,821 (48.13) 38,425 (49.09)

Tertiary 21,834 (16.73) 14,666 (18.74)

Missing 2397 (1.84) 3007 (3.84) - -
Study, N (%) ALSA 1843 (1.41) 244(0.31) 27,000%** 0.36

ELSA 14,483 (11.1) 4006 (5.12)

ENRICA 2513 (1.93) 6 (0.01)

HRS 32,934 (25.23) 4382 (5.60)

JSTAR 3695 (2.83) 3573 (4.56)

KLOSA 8928 (6.84) 1326 (1.69)

MHAS 12,647 (9.69) 8719 (11.14)

SHARE 53,478 (40.97) 56,023 (71.57)
Health score, M (SD) 70.21 (16.46) 7038 (17.81) —2.05% —0.0004
Physical activity (aggregated), N (%) No 49,622 (38.02) 21,999 (28.10) 1300%** 0.08

Yes 80,001 (61.29) 50,555 (64.58)

Missing 1397 (0.69) 5725 (7.31) - -
Frequency of vigorous physical activity, N (%) Never 42,244 (32.37) 26,326 (33.63) 3300%** 0.15

Once per week 20,738 (15.89) 12,865 (16.43)

2/3 per week 7129 (5.46) 882 (1.13)

4+ per week 23,789 (18.23) 19,278 (24.63)

Missing 36,621 (28.06) 18,928 (24.18) - -
Frequency of less vigorous physical activity, N (%) Never 1 (9.00) 8371 (10.69) 5100%** 0.19

Once per week 16,840 (12.90) 11,984 (15.31)

2/3 per week 10,311 (7.90) 1145 (1.46)

4+ per week 44,556 (34.14) 36,324 (46.40)

Missing 47,063 (36.06) 20,455 (26.13) - -
Ever smoker*, N (%) No 62,168 (47.63) 40,439 (51.66) 487.34%%* 0.05

Yes 66,817 (51.19) 35,508 (45.36)

Missing 1536 (1.18) 2332 (2.98) - -
Ever drinker*, N (%) No 39,019 (29.89) 29,797 (38.07) 1800%** 0.09

Yes 91,023 (69.74) 46,260 (59.10)

Missing 479 (0.37) 2222 (2.84) - -

Note. All variables correspond to participants’ baseline, except for ever drinker and ever smoker, which correspond to the whole period of participation.
Effect size estimates for age and health score correspond to Cohen'’s d; the remaining effect size estimates correspond to Cramer’s V, and have been

computed with non-missing data only. M: mean, SD: standard deviation, N: number of cases, t: Student's t test; xzz chi-square test. *: p <.05;

*% p < 001
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Table 2 Fit statistics of the Latent Growth Curve Model and Growth Mixture Models
Linear growth - Number of latent classes
1 class 2 classes 3 classes 4 classes 5 classes
Loglikelihood —1,661,740 (6) —1,657,724 (9) —1,656,300 (12) —1,655481 (15) —1,654,823 (18)
(N of parameters)
BLRT 8032.7%** 2846.4%** 1639.3%** 1314.5%*
Adj. LMR-LRT 7811.6%** 2768.1%* 1594.2%%* 1278.3%**
BIC 3,323,552 3,315,554 3312743 3311,139 3,309,860
SABIC 3,323,532 3,315,526 3,312,705 3,311,091 3,309,803
Entropy 0.644 0.692 0.661 0.690
Group size (%)
Class 1 100 735 4.1 54.1 172
Class 2 26.5 254 9.9 2.1
Class 3 70.5 36 43.1
Class 4 324 34.1
Class 5 35
Quadratic growth - Number of latent classes
1 class 2 classes 3 classes 4 classes 5 classes
Loglikelihood (N of parameters) —1,660,737 (10) —1,656,703 (14) —1,655,111 (18) —1,654,139 (22)
BLRT 8067.8%** 3184.6%** 1943.9%%*
Adj. LMR-LRT 7900.7%** 31184 1903.5%**
BIC 3,321,592 3,313,571 3310434 3,308,537
SABIC 3,321,560 3313527 3310377 3,308,467
Entropy 0.644 0.722 0.668
Group size (%)
Class 1 100 735 252 342
Class 2 265 34 122
Class 3 714 33
Class 4 50.3
Class 5

Note. *** p <.001. The model with quadratic growth and 5 classes provided an improper solution and therefore is not displayed in the table. BLRT Bootstrap
likelihood ratio test; Adj. LMR-LRT Adjusted Lo-Mendell-Rubin likelihood ratio test; BIC Bayesian Information Criterion; SABIC Sample-size-Adjusted Bayesian

Information Criterion

Impact of physical activity on the latent classes

Table 3 (lower section) shows the odds ratios from
the multinomial logistic regression models of the la-
tent classes on physical activity adjusted for age, gen-
der, study, wealth, education level, ever smoking, and
ever drinking. Participants engaging in vigorous or
less vigorous exercise throughout the week, compared
with physically inactive participants, had significantly
reduced likelihood of being in the low stable and fast
decline latent-classes than in the high stable latent-
class. Similar findings were also observed for the ag-
gregated variable of physical activity. For instance,
participants that were characterised as physically in-
active had 5.56 times the odds (OR,ive = 0.18, 95% CI
[0.17, 0.19]) of being in the low stable latent class
compared to the high stable latent class; and 2.27

times the odds (OR,tive = 0.44, 95% CI [0.39, 0.50]) of
being in the fast decline latent class.

Table 4 and Table 5 display the results of the sensitiv-
ity analyses performed with the reduced samples [i.e.
with the studies that had information on frequency of
vigorous (A) and less vigorous exercise (B), respectively].
These analyses showed similar results regarding the
number and the pattern of the health trajectories and
their associations with physical activity.

Discussion

Main findings

Using a harmonised dataset of eight ageing cohorts
across the world, we identified three types of healthy
ageing trajectories (high stable, low stable and fast de-
cline) and investigated how physical activity in older age
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Fig. 1 Trajectories of health according to the three latent classes Growth Mixture Model
Table 3 Estimates for the three latent classes Growth Mixture Model of healthy ageing and multinomial logistic regressions
coefficients
Latent classes (n = 130,521)
High stable Low stable Fast decline
n (%) 93,208 (71.4) 32,885 (25.2) 4428 (34)
Mean Intercept (SE) 7647 (0.08) 5172 (0.12) 77.18 (0.31)
Mean Linear Slope (SE) 0.15 (0.03) —0.64 (0.05) —9.81 (0.57)
Mean Quadratic Slope (SE) —0.07 (0.003) 0.01 (0.01) 0.58 (0.06)
Variance Intercept (SE) 83.02 (1.04)
Variance Linear Term (SE) 2.78 (0.17)
Variance Quadratic Term (SE) 0.03 (0.002)
Covariance Intercept-Linear Term (SE) —0.58 (0.30)
Covariance Intercept-Quadratic Term (SE) -0.01 (0.03)
Covariance Linear-Quadratic Terms (SE) -0.21 (0.02)
Physically active (n = 120,712)
No Reference class Ref.
Yes, OR (95% Cl) 0.18 [0.17,0.19] 044 [0.39, 0.50]
Vigorous physical activity (n = 90,451)
Never Reference class Ref.
Once per week, OR (95% Cl) 0.22 [0.20, 0.24] 0.43 [0.34, 0.56]
2/3 times per week, OR (95% Cl) 0.18 [0.16, 0.21] 0.25 [0.16, 0.39]
4+ times per week, OR (95% Cl) 0.11 [0.10,0.12] 0.65 [0.53, 0.80]
Less vigorous physical activity (n = 80,707)
Never Reference class Ref.

Once per week, OR (95% Cl)
2/3 times per week, OR (95% Cl)
4+ times per week, OR (95% Cl)

0.17 [0.15, 0.19]
0.07 [0.05,0.12]
0.07 [0.06, 0.07]

0.26 [0.20, 0.34]
0.11 [0.07, 0.16]
0.23 [0.18, 0.28]

Note. Cl Confidence interval; OR Odds ratio; SE Standard error. All multinomial logistic regression models are adjusted for age, gender, study, wealth,

education, smoking, and alcohol drinking
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Table 4 Estimates for the sensitivity analysis A: three latent classes Growth Mixture Model of healthy ageing and multinomial logistic
regressions coefficients with reduced sample (studies with information on vigorous activity)

Latent classes (n = 100,878)

High stable
n (%) 73,112 (72.5)
Mean Intercept (SE) 77.06 (0.09)
Mean Linear Slope (SE) 0.17 (0.03)
Mean Quadratic Slope (SE) —0.07 (0.003)
Variance Intercept (SE) 83.79 (1.15)
Variance Linear Term (SE) 2.80 (0.20)
Variance Quadratic Term (SE) 0.03 (0.002)
Covariance Intercept-Linear Term (SE) —0.07 (0.32)
Covariance Intercept-Quadratic Term (SE) —0.06 (0.03)
Covariance Linear-Quadratic Terms (SE) -0.22 (0.02)
Physically active (n = 96,701)

No Reference class

Yes, OR (95% Cl)
Vigorous physical activity (n = 90,451)
Never
Once per week, OR (95% Cl)
2/3 times per week, OR (95% Cl)
4+ times per week, OR (95% Cl)
Less vigorous physical activity (n = 80,707)
Never
Once per week, OR (95% Cl)
2/3 times per week, OR (95% Cl)
4+ times per week, OR (95% Cl)

Reference class

Reference class

Low stable Fast decline
24,303 (24.1) 3463 (34)
51.88 (0.15) 7867 (0.36)
—0.82 (0.05) -9.16 (0.67)
0.03 (0.005) 049 (0.07)

Ref.

0.16 [0.15,0.17] 040 [0.34, 0.46]
Ref.

0.22 [0.20, 0.24] 042 [0.32, 0.54]
0.19 [0.16, 0.21] 0.22 [0.13, 0.35]
0.12 [0.11,0.13] 0.65 [0.52, 0.82]
Ref.

0.17 [0.15, 0.19] 0.23 [0.17,031]
0.08 [0.07, 0.09] 0.09 [0.06, 0.14]
0.07 [0.06, 0.07] 0.21 [0.17,0.27]

Note. Cl: confidence interval; OR: odds ratio; SE: standard error. All multinomial logistic regression models are adjusted for age, gender, study, wealth, education,

smoking, and alcohol drinking

was associated with these different types of trajectories.
Our study suggests a positive impact of physical activity
on supporting healthy ageing. Engagement in any levels
of physical activity was associated with decreased odds
of being in low stable or fast decline groups of healthy
ageing trajectories.

Strengths and limitations

Our study has several methodological strengths in
comparison with previous research. The ATHLOS
harmonised dataset covered participants from differ-
ent backgrounds and the longitudinal data provided
rich information on changes in health and functioning
over 10years. The large sample size and harmonised
variables allowed us to explore various types of
healthy ageing trajectories and their relationships with
physical activity in different populations. This may in-
crease the generalisability of the findings. Instead of
focusing on presence of selected diseases or impair-
ments, we conceptualised healthy ageing using

multiple indicators of health, physical and cognitive
functioning and generated a common measure across
multiple cohorts.

Our findings should be considered in the light of
limitations. Firstly, harmonisation as a process is
retrospective and the initial studies were not designed
to be harmonised. This reflects on the amount of
missing data in some of the physical activity variables.
To try to overcome this limitation, 1) we conducted
sensitivity analyses to assess potential differences in
the number and the characteristics of the latent clas-
ses due to missing values on these physical activity
variables. We found that the shape and the size of
the latent groups were similar across all analyses, sug-
gesting the robustness of the results. 2) We also cre-
ated the physical activity aggregated variable and
employed it along with the other two physical activity
variables to assess the potential impact of these differ-
ent operationalisations on the associations. Even
though there were some differences in the effect size
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Table 5 Estimates for the sensitivity analysis B: three latent classes Growth Mixture Model of healthy ageing and multinomial logistic
regressions coefficients with reduced sample (studies with information on less vigorous activity)

Latent classes (n = 91,950)

High stable
n (%) 61,774 (67.2)
Mean Intercept (SE) 78.21 (0.08)
Mean Linear Slope (SE) 042 (0.04)
Mean Quadratic Slope (SE) —0.09 (0.004)
Variance Intercept (SE) 75.32 (1.15)
Variance Linear Term (SE) 2.80 (0.23)
Variance Quadratic Term (SE) 0.03 (0.002)
Covariance Intercept-Linear Term (SE) —1.07 (0.36)
Covariance Intercept-Quadratic Term (SE) 0.04 (0.04)
Covariance Linear-Quadratic Terms (SE) -0.23 (0.02)
Physically active (n = 87,806)

No Reference class

Yes, OR (95% Cl)
Vigorous physical activity (n = 81,556)
Never
Once per week, OR (95% Cl)
2/3 times per week, OR (95% Cl)
4+ times per week, OR (95% Cl)
Less vigorous physical activity (n = 80,707)
Never
Once per week, OR (95% Cl)
2/3 times per week, OR (95% Cl)
4+ times per week, OR (95% Cl)

Reference class

Reference class

Low stable Fast decline
25461 (27.7) 4715 (5.1)
52.51(0.13) 7892 (0.23)
—0.84 (0.05) —7.97 (0.49)
0.03 (0.005) 041 (0.05)

Ref.

0.18 [0.17,0.20] 041 [0.36, 0.46]
Ref.

0.27 [0.25, 0.28] 043 [0.35, 0.53]
0.21 [0.19, 0.24] 0.20 [0.14, 0.30]
0.14 [0.13, 0.15] 0.58 [047, 0.71]
Ref.

0.21 [0.19, 0.23] 0.32 [0.25, 0.40]
0.10 [0.09, 0.11] 0.15[0.11, 0.20]
0.09 [0.08, 0.10] 0.24 [0.20, 0.29]

Note. Cl Confidence interval; OR Odds ratio; SE Standard error. All multinomial logistic regression models are adjusted for age, gender, study, wealth, education,

smoking, and alcohol drinking

estimates, the conclusions did not change based on
the measure used: people that engaged in some phys-
ical activity had higher chances to be included in the
group with better health. In line with this first limita-
tion, the aggregated physical activity variable was
created ad hoc in the present study to allow for the
inclusion of cohort studies that used different opera-
tionalisations of physical activity. However, the
sensitivity analyses performed using different categori-
sations of physical activity achieved similar results,
thus providing evidence on the robustness of the
findings involving this aggregated variable. Addition-
ally, the information on physical activity was based on
self-reported items, which may have been affected by
response biases. These limitations prevent us, for in-
stance, from providing detailed insights about the spe-
cific amount of physical activity that related to the
membership to the better healthy ageing trajectory.
Although we controlled for behavioural factors such
as smoking and alcohol drinking, we could not

control for the potential confounding effect of diet
quality in our analyses [23] since that information
was not available in the majority of the included
studies. Moreover, the sample size in smallest latent
class (i.e. fast decline) was relatively low, which led to
wider confidence intervals. Finally, although recent re-
search on low- and middle-income countries has
found results that are consistent with the evidence
presented in our study [9, 24], it is important to note
that most of the countries included in this study were
high-income countries. As a result of these limita-
tions, extra caution is needed when generalising these
findings.

Interpretation of findings

The results from our study suggest that physically in-
active older adults were more likely to exhibit worse
trajectories of health with age than those that en-
gaged in some form of physical activity. This corre-
sponds to the literature and highlights the important
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role of being physically active in healthy ageing [12,
25]. Instead of focusing on presence of diseases or
dichotomised health outcomes [25], our study shows
the existence of subgroups within the older popula-
tion exhibiting different trajectories of health and pro-
vides evidence on how physical activity is related to
those different trajectories after adjusting for socio-
economic factors, smoking, drinking, and data source
(i.e. study). It is true that variation in the healthy age-
ing trajectories may be the result of specific determi-
nants (i.e. physical activity as our findings indicate) or
due to the heterogeneity across countries or research
settings. However, previous research in sub-studies of
the ATHLOS harmonised dataset [i.e. 10/66 study
[24] and MHAS study [9]] has suggested similar tra-
jectories of healthy ageing and a similar effect of
physical activity to those. Notably, the study focused
on the MHAS cohort [9] adopted a similar analytical
approach and identified four types of healthy ageing
trajectories (high stable, moderate stable, low stable,
and fast decline) in over the 10year follow-up period
and reported that physical activity was associated with
lower odds of being in low stable and fast decline
groups. Taking these previous research evidence and
the findings of the present study altogether, it may be
assumed that it is indeed different lifestyle behaviours
and not countries heterogeneity that create this vari-
ation in the trajectories. In addition, from a methodo-
logical point of view, the fact that we considered
study effect, within-country household wealth quintile,
and education level in the creation of our models also
enforces the belief that any heterogeneity in the study
level has already been accounted for in the models
specification.

These consistent findings suggest the potential for
physical activity to increase baseline health and func-
tioning and minimise decline rates in older age. Even
a small amount of physical activity (such as getting
involved in moderate physical activity once per week)
may reduce likelihood of experiencing severe deterior-
ation of health and functioning in older age. Among
other potential pathways through which physical ac-
tivity may have a beneficial effect on older adults’
health, previous evidence has suggested that active
older adults, compared to inactive ones, present lower
cardiometabolic risk [26, 27] and age-related inflam-
mation [28], both of which are related to many
chronic diseases.

Whilst most of the population exhibited a stable tra-
jectory at a high level of health, we found two subgroups
with alternative trajectories: one with a stable lower level
of health; and a third subgroup starting at a similar point
as the majority of the population but whose health se-
verely deteriorated over time. These results were similar
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to those reported in previous studies in terms of the
number and shape of the different trajectories [9, 29,
30], although in some of these studies the declining tra-
jectories comprised a higher percentage of the popula-
tion. Our findings were replicated in the sensitivity
analyses, supporting the existence of heterogeneity in
ageing trajectories and the importance of accounting for
this heterogeneity when studying healthy ageing [3, 4].

Public health implications

Empirical evidence from this study highlight the
positive impact of physical activity on supporting
healthy ageing, in particular the opportunity to at-
tenuate health and functioning declines in older age.
Increasing any levels of physical activity or breaking
sedentary behaviour can be beneficial to health and
functioning in older adults [31, 32]. Indeed, physical
activity promotion has been a key focus of public
health policies particularly in high income countries
[33]. Several community-based and web-based inter-
ventions have been developed to promote physical
activity and prevent loss of functional ability in older
people [25, 34-40]. However, effectiveness of phys-
ical activity interventions might be uncertain given
short follow-up periods and highly selected popula-
tions in most trials [41]. Future research may assess
long-term effects of physical activity interventions
and identify barriers to maintain activity levels and
reduce sedentary lifestyle in older age. Utilising
existing cohort data with longitudinal study designs
can be a possible approach to investigate trajectories
of physical activity across the life course and provide
evidence to identify key factors that support physical
activity habits in older adults and inform population-
level interventions [42].

Public health policies on physical activity promotion
can play a key role in reducing burdens of disability as
well as healthcare costs in ageing populations. Although
policies that promote individual-based interventions may
be helpful to develop plans and approaches to increase
physical activity at the individual level, it is also import-
ant to provide a supportive environment for active age-
ing [43] and address environmental and social factors
related to physical activity in older age [44].

Conclusions

In this study, we investigated the association between
physical activity and different types of healthy ageing tra-
jectories using a large harmonised dataset of eight cohort
studies. Abstinence from any form of physical activity was
associated with poor healthy ageing trajectories in terms
of low baseline scores and fast decline rates. Promoting an
active lifestyle appears to play an important role in main-
taining health and functioning in older age.
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