Skip to content


  • Short paper
  • Open Access

The neighborhood food environment: sources of historical data on retail food stores

  • 1, 2Email author,
  • 1, 3,
  • 2 and
  • 3
International Journal of Behavioral Nutrition and Physical Activity20063:15

  • Received: 15 December 2005
  • Accepted: 17 July 2006
  • Published:


With the rapidly increasing prevalence of obesity in the United States, and the minimal success of education-based interventions, there is growing interest in understanding the role of the neighborhood food environment in determining dietary behavior. This study, as part of a larger study, identifies historical data on retail food stores, evaluates strengths and limitations of the data for research, and assesses the comparability of historical retail food store data from a government and a commercial source.

Five government and commercial listings of retail food stores were identified. The California State Board of Equalization (SBOE) database was selected and then compared to telephone business directory listings. The Spearman's correlation coefficient was used to assess the congruency of food store counts per census tract between the SBOE and telephone business directory databases. The setting was four cities in Northern California, 1979–1990.

The SBOE and telephone business directory databases listed 127 and 351 retail food stores, respectively. The SBOE listed 36 stores not listed by the telephone business directories, while the telephone business directories listed 260 stores not listed by the SBOE. Spearman's correlation coefficients between estimates of stores per census tract made from the SBOE listings and those made from the telephone business directory listings were approximately 0.5 (p < .0001) for the types of stores studied (chain supermarkets, small grocery stores, and chain convenience markets). We conclude that, depending on the specific aims of the study, caution and considerable effort must be exercised in using and applying historical data on retail food stores.


  • Census Tract
  • Food Store
  • Convenience Store
  • Chain Supermarket
  • Secondary Data Source

Short paper

With the increasing prevalence of obesity in the United States [1], and the minimal success of education-based interventions [2, 3], there has been growing interest in investigating the role of the neighborhood food environment in influencing dietary behavior [48]. Such an investigation requires an operational definition of the neighborhood food environment, and methods for acquiring the relevant data.

The neighborhood food environment can be operationally defined by counts of various types of retail food stores or restaurants, which have been used to indicate the types of foods that are readily available within a neighborhood [710]. These counts may be expressed relative to geographic area (e.g. number of supermarkets per square mile) or in absolute terms (e.g. number of supermarkets per neighborhood). Another way to indicate the accessibility of various types of foods in a neighborhood is proximity or the closest distance to a particular type of food store from a participant's residence [8]; such a method has been used to indicate accessibility of other health-related goods and services such as alcohol [11, 12]. Neighborhoods may be defined using census tract boundaries [1315].

The primary aim of this paper is to describe the methodological challenges of measuring past neighborhood food environment. This effort was conducted as part of a larger study aiming to examine the associations between the neighborhood food environment and obesity risk using epidemiologic data previously collected from over 8000 men and women, aged 18–74 years, by the Stanford Heart Disease Prevention Program (SHDPP) between 1979 and 1990 [16]. In particular we will identify historical sources of retail food store data, assess the strengths and limitations of these data sources and, evaluate the comparability of two selected data sources.

Identification of databases

We searched the internet, and contacted health, agriculture and business licensing government departments to determine potential databases relevant to the aims of our larger study. In particular, we sought databases that were likely to: (a) contain store name, street address, and dates of operation; (b) provide information indicating the type of food store (supermarket, convenience store, small grocery store, etc.), and size of operations [such as annual sales volume, number of cash registers, store area (square footage)]; and (c) include small grocery stores. In addition, for the purposes of our larger study, which involved a retrospective cohort [11, 12, 17], we required that data be available for the years, 1979–1990.

Information on food store type was needed to indicate the availability of healthy or unhealthy foods. Since these data were historical, we did not have the opportunity to observationally assess if the stores carried healthy or unhealthy foods. However, a few studies have observed that in the United States, supermarkets tend to carry healthy foods, while small grocery stores ('corner markets') and convenience stores are less likely to carry healthy foods, especially fresh produce [18, 19]. Information on the size of operations was considered helpful for distinguishing small grocery stores from larger stores especially those that were independent and did not belong to a corporate chain.

We identified five databases, two from government sources (a city business licensing department, and the State Board of Equalization, SBOE) and three from commercial sources (Dun & Bradstreet, Trade Dimensions, and the telephone business directory).

Strengths and limitations of the identified data sources

Strengths and limitations of these five databases are summarized in Table 1. In general, all government databases provide listings of stores by name and address. The SBOE maintained records of the initial date of application for a license or permit and subsequent dates of active renewal, allowing for the years of operation to be determined. Small grocery stores were generally included in government databases.
Table 1

Government and commercial retail food store data sources

Potential data source

Data available for the 1980s

Dates of operation

How often information is updated

Store name and address

Indicator of scale of operationsb

Some information for classifying food store as supermarket, etc.

Include small grocery stores


Local business licensing agencies



When licenses are renewed





State Board of Equalizationd (California)


Can be derived from multiple renewal records

When permits are renewed




Only those that carry taxable items e


Dun & Bradstreetf







Not usually

Trade Dimensionsh



Annually or semi-annually




Stores with annual sales volume of <$0.5 m are not usually included

Yellow Pages



Updated only when advertisement contract is renewed

Address sometimes not available




aInformation presented here was obtained in 2002–2003 for data relevant to 1979–1990.

bIndicators of scale of operations included annual sales volume, number of employees, number of cash registers, and store area (square footage).

cOnly one city agency (Modesto) was able to retrieve data for 1979–1990.

dThe California State Board of Equalization (SBOE) is responsible for collecting and allocating sales and use taxes from all businesses that sell taxable goods, and has records of all retail food stores except those that sell only non-taxable items such as fresh meat, produce and dairy. The data were obtained from Merlin Information Services (Kalispell, MT), a private vendor of national and California-specific public record information.

eAll stores that sell taxable items are required by law to apply for a permit but compliance is not 100%.

fDun & Bradstreet (Short Hills, NJ) is an established organization that maintains one of the most comprehensive business information databases in North America.

gData for chain stores are available only at the corporate level, but not at the store level.

hTrade Dimensions (Wilton, CT) gathers data on the retail food industry and provides marketing information to organizations such as the Food Marketing Institute and Progressive Grocer.

Commercial databases that served to provide business related information, such as Dun & Bradstreet, and Trade Dimensions, were updated about once every 6–12 months, and provided indicators of the size of store operations. Dun and Bradstreet's information on size of operations was not available at the store level for chain stores. (For example, sales volume estimates were available for Safeway Corporation but not for a Safeway store at a specific location.) Small retail food stores with annual sales volume of less than $500,000 were generally not included in these two databases.

The telephone business directories were likely to include small grocery stores. However, their store listings were problematic for our purposes. Specifically, store addresses sometimes reflected the address of the headquarters office rather than the physical location of the store. Further, stores located in the same building were often listed using the same street address (without showing a suite number), making it difficult to decide if they were separate stores or the same store listed under different names.

Comparability of databases

Since the SBOE and telephone business directory databases were the only sources that included listings of small grocery stores, they were selected for comparison. For the purposes of our larger study, we created datasets that contained records of stores that were open for any period of time during the years relevant to the data gathered by the SHDPP (1979–1990); the time period for which the store was open was recorded to subsequently allow for the store data to be properly matched to the year in which SHDPP participants were examined.

To assess the comparability of the two selected datasets, we matched records to determine the number of stores in one database that were also found in the other for the years 1979–1990. We further compared the store counts per census tract estimated by the two databases, and calculated the percentage of census tracts with similar store counts per census tract, derived from the SBOE database and the telephone business directory listings. We conducted these analyses for three major store types: supermarkets, small grocery stores, and chain convenience stores. (Other food store types were too few in number to allow for a meaningful analysis.) These stores were classified using store categories and definitions developed by the North American Industry Classification System, and the Food Marketing Institute

• A supermarket is any self-service grocery store that generates an annual sales volume of >$2 million.

• A small grocery store/market is an independently owned store that sells beverages, tobacco, and a limited selection of convenience foods (including ethnic markets).

• A convenience store is any self-service grocery store that offers a limited line of high-convenience items; it is usually open long hours and provides easy access.

The SBOE and telephone business directory databases listed 127 and 351 retail food stores, respectively. The SBOE listed 36 stores not listed by the telephone business directories (28%), while the telephone business directories listed 260 stores not listed by the SBOE (74%). These additional stores listed in one database but not in the other were almost equally distributed among chain supermarkets, small grocery stores, and chain convenience markets. These data suggest that retail food store counts derived from the SBOE were likely to be underestimated; SBOE listings omitted stores that did not sell any taxable goods (in general, only a few food products such as hot-prepared foods and certain beverages, are taxable) and stores that failed to get a tax permit.

In contrast, retail food store counts derived from the telephone business directories were likely to be overestimated. The telephone business directories sometimes listed the same store multiple times under different categories, or under different names. Inquiries of telephone business directory staff revealed that any business with a valid phone number could pay to be listed under any number of categories or names, and for more than one year. This meant that telephone business directories might include stores that had recently closed. As a result, telephone business directories almost always gave a considerably higher count of stores than the SBOE database.

We also compared the counts of the various types of food stores per census tract, derived from both data sources (SBOE and telephone business directories). We found that 95%, 67% and 81% of the 84 census tracts in our study had counts of supermarkets, small grocery stores, and chain convenience stores respectively, that were identical or did not differ by more than one store. Identical agreement between estimates ranged from 39% for chain convenience stores to 57% for chain supermarkets. The correlation between SBOE- and telephone business directory-derived store counts per census tract was moderate (Spearman's correlation coefficient = 0.5, p < .0001) for all three types of stores studied.

To our knowledge, this is the first study to address the methodological challenges of measuring the neighborhood food environment in the United States. The following limitations to the applicability of our findings should be noted. Our findings are specific to information for the years 1979–1990. Investigations requiring current data will have access to more retail food store databases and also have the opportunity to interview store managers, and directly assess the quality and affordability of foods available in the stores. This paper does not include a discussion of sources of data on eating places. Finally, we did not examine all types of stores. Medium-sized independent supermarkets, and stores that specialized in produce, meat, seafood, etc. were too few in number to be meaningfully examined. Also, we did not examine ethnic markets separately from other small grocery stores. Ethnic markets may be more likely to carry fruits and vegetables than other small grocery stores. Qualitative data gathered by one of the authors (AG), from a socio-economically diverse group of 28 women suggest that ethnic markets, but not other small grocery stores, are perceived as predominant sources of quality and affordable fresh produce.

We recommend that researchers needing to use secondary data sources of retail food stores carefully evaluate the appropriateness of use of the databases. Studies using past secondary data sources should at the least, understand and recognize the limitations of historical databases, which suffer from the lack of a 'gold standard'. Studies using current secondary data sources could benefit from an effort to assess the validity of these sources through observational techniques.



This study was supported by the American Heart Association through an Established Investigator Award 0240102N (PI: Wang, MC) and through an RO1 Award HL67731 from the National Institute of Environmental Health Sciences and the National Heart, Lung, and Blood Institute (PI: Winkleby, M). We also thank Kara MacLeod, M.A., for assisting with formatting and proof-reading the manuscript, and providing helpful editorial comments.

Authors’ Affiliations

School of Public Health, University of California at Berkeley, CA, USA
Center for Weight & Health, College of Natural Resources & School of Public Health, University of California at Berkeley, CA, USA
Stanford Prevention Research Center, Stanford University School of Medicine, USA


  1. Centers for Disease Control: Obesity trends: Nutrition and Physical Activity.
  2. Contento I, Balch GI, Bronner YL, Lytle LA, Maloney SK, Olson CM, Swadener SS: Theoretical frameworks or models for nutrition education. J Nutr Educ. 1995, 27: 287-290.View ArticleGoogle Scholar
  3. Winkleby MA, Feldman HA, Murray DM: Joint analysis of three U.S. community intervention trials for reduction of cardiovascular disease risk. J Clin Epidemiol. 1997, 50: 645-58. 10.1016/S0895-4356(97)00020-6.View ArticleGoogle Scholar
  4. Cheadle A, Psaty BM, Curry S, Wagner E, Diehr P, Koepsell T, Kristal A: Community-level comparisons between the grocery store environment and individual dietary practices. Prev Med. 1991, 20: 250-261. 10.1016/0091-7435(91)90024-X.View ArticleGoogle Scholar
  5. Macintyre S, Maciver S, Sooman A: Area, class and health: Should we be focusing on places or people?. J Social Policy. 1993, 22: 213-234.View ArticleGoogle Scholar
  6. Diez-Roux AV, Nieto FJ, Caulfield L, Tyroler HA, Watson RL, Szklo M: Neighbourhood differences in diet: the Atherosclerosis Risk in communities (ARIC) Study. J Epidemiol Comm Health. 1999, 53: 55-63.View ArticleGoogle Scholar
  7. Morland K, Wing S, Diez Roux A: The contextual effect of the local food environment on residents' diets: the atherosclerosis risk in communities study. Am J Public Health. 2002, 92: 1761-7.View ArticleGoogle Scholar
  8. Laraia BA, Siega-Riz AM, Kaufman JS, Jones SJ: Proximity of supermarkets is positively associated with diet quality index for pregnancy. Prev Med. 2004, 39: 869-75. 10.1016/j.ypmed.2004.03.018.View ArticleGoogle Scholar
  9. Morland K, Wing S, Diez Roux A, Poole C: Neighborhood characteristics associated with the location of food stores and food service places. Am J Prev Med. 2002, 22: 23-29. 10.1016/S0749-3797(01)00403-2.View ArticleGoogle Scholar
  10. Block JP, Scribner RA, DeSalvo KB: Fast food, race/ethnicity, and income: a geographic analysis. Am J Prev Med. 2004, 27: 211-7.Google Scholar
  11. Pollack CE, Cubbin C, Ahn D, Winkleby M: Neighborhood Deprivation and Alcohol Consumption: Does the Availability of Alcohol Play a Role?. Int J Epidemiol.Google Scholar
  12. Cubbin C, Winkleby M: Multilevel Analysis Examining the Influence of Neighborhood Level Deprivation on Health Knowledge, Behavior Changes, and Risk of Coronary Heart Disease: Findings from Four Cities in Northern California. Am J Epidemiol.Google Scholar
  13. Krieger N, Williams DR, Moss NE: Measuring social class in us public health research: Concepts, methodologies, and guidelines. Ann Rev Pub Health. 1997, 18: 341-78. 10.1146/annurev.publhealth.18.1.341.View ArticleGoogle Scholar
  14. Diez Roux AV, Merkin SS, Arnett D, Chambless L, Massing M, Nieto FJ, Sorlie P, Szklo M, Tyroler HA, Watson RL: Neighborhood of residence and incidence of coronary heart disease. N Engl J Med. 2001, 345 (2): 99-106. 10.1056/NEJM200107123450205.View ArticleGoogle Scholar
  15. Winkleby MA, Cubbin C: Influence of individual and neighbourhood socioeconomic status on mortality among black, Mexican-American, and cswhite women and men in the United States. J Epidemiol Commun Health. 2003, 57 (6): 444-452. 10.1136/jech.57.6.444.View ArticleGoogle Scholar
  16. Farquhar J, Fortmann S, Maccoby N, Haskell W, Flora J, Barr T, Brown B, Solomon D, Hulley S: The Stanford five-city project: design and methods. Am J Epidemiol. 1985, 122: 323-324.Google Scholar
  17. Chuang Y, Cubbin C, Ahn D, Winkleby M: Effects of Neighborhood Socioeconomic Status and Convenience store Concentration on Individual-level Smoking. J Epidemiol Community Health. 2005, 59: 568-73. 10.1136/jech.2004.029041.View ArticleGoogle Scholar
  18. Sallis JF, Nader PR, Rupp JW, Atkins CJ, Wilson WC: San Diego surveyed for heart healthy foods and exercise facilities. Public Health Report. 1986, 101: 206-238.Google Scholar
  19. Sloane DC, Diamant AL, Lewis LB, Yancey AK, Flynn G, Nascimento LM, McCarthy WJ, Guinyard JJ, Cousineau MR: REACH Coalition of the African American building a Legacy of Health Project. Improving the nutritional resource environment for healthy living through community-based participatory research. J Gen Intern Med. 2003, 18: 568-75. 10.1046/j.1525-1497.2003.21022.x.View ArticleGoogle Scholar


© Wang et al; licensee BioMed Central Ltd. 2006

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.