Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123–32.
Article
PubMed
Google Scholar
LeBlanc AG, Gunnell KE, Prince SA, Saunders TJ, Barnes JD, Chaput J-P. The ubiquity of the screen: an overview of the risks and benefits of screen time in our modern world. Transl J Am Coll Sports Med. 2017;2(17):104–13.
Google Scholar
Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, et al. Sedentary behavior research network (SBRN)–terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75.
Article
PubMed
PubMed Central
Google Scholar
Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388(10051):1302–10.
Article
PubMed
Google Scholar
World Health Organization. Recommended levels of physical activity for adults aged 18 - 64 years 2011 [Available from: https://www.who.int/dietphysicalactivity/factsheet_adults/en/.
Public Health Agency of Canada. Sedentary Behaviour and Sleep (PASS) Indicators, Quick Stats, Adults (18+ years), 2018 Edition. 2018. [Available from: https://health-infobase.canada.ca/pass/.
Du Y, Liu B, Sun Y, Snetselaar LG, Wallace RB, Bao W. Trends in Adherence to the Physical Activity Guidelines for Americans for Aerobic Activity and Time Spent on Sedentary Behavior Among US Adults, 2007 to 2016. JAMA Network Open. 2019;2(7):e197597-e.
Article
PubMed
PubMed Central
Google Scholar
Loyen A, Clarke-Cornwell AM, Anderssen SA, Hagströmer M, Sardinha LB, Sundquist K, et al. Sedentary time and physical activity surveillance through accelerometer pooling in four European countries. Sports Med. 2017;47(7):1421–35.
Article
PubMed
Google Scholar
Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56.
Article
PubMed
PubMed Central
Google Scholar
Prince SA, LeBlanc AG, Colley RC, Saunders TJ. Measurement of sedentary behaviour in population health surveys: a review and recommendations. PeerJ. 2017;5:e4130.
Article
PubMed
PubMed Central
Google Scholar
Healy GN, Clark BK, Winkler EAH, Gardiner PA, Brown WJ, Matthews CE. Measurement of adults' sedentary time in population-based studies. Am J Prev Med. 2011;41(2):216–27.
Article
PubMed
PubMed Central
Google Scholar
Prince SA, Butler GP, Roberts KC, Lapointe P, MacKenzie AM, Colley RC, et al. Developing content for national population health surveys: an example using a newly developed sedentary behaviour module. Arch Public Health. 2019;77:53.
Article
PubMed
PubMed Central
Google Scholar
Dowd KP, Szeklicki R, Minetto MA, Murphy MH, Polito A, Ghigo E, et al. A systematic literature review of reviews on techniques for physical activity measurement in adults: a DEDIPAC study. Int J Behav Nutr Phys Act. 2018;15(1):15.
Article
PubMed
PubMed Central
Google Scholar
Dall P, Coulter E, Fitzsimons C, Skelton D, Chastin S. TAxonomy of Self-reported Sedentary behaviour Tools (TASST) framework for development, comparison and evaluation of self-report tools: content analysis and systematic review. BMJ Open. 2017;7(4):e013844.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grant PM, Ryan CG, Tigbe WW, Granat MH. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br J Sports Med. 2006;40(12):992–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edwardson CL, Rowlands AV, Bunnewell S, Sanders J, Esliger DW, Gorely T, et al. Accuracy of Posture allocation algorithms for thigh- and waist-worn accelerometers. Med Sci Sports Exerc. 2016;48(6):1085–90.
Article
PubMed
Google Scholar
Akerberg A, Koshmak G, Johansson A, Linden M. Heart rate measurement as a tool to quantify sedentary behavior. Studies Health Tech Info. 2015;211:105–10.
Google Scholar
Boudet G, Chausse P, Thivel D, Rousset S, Mermillod M, Baker JS, et al. How to measure sedentary behavior at work? Front. 2019;7(167).
Blanchard RA, Myers AM, Porter MM. Correspondence between self-reported and objective measures of driving exposure and patterns in older drivers. Accident Analysis Prev. 2010;42(2):523–9.
Article
Google Scholar
Kim H. Sedentary Behavior Intervention: Application of Contextual Information of Sedentary Behavior. Ann Arbor: Middle Tennessee State University; 2018.
Google Scholar
Chastin SF, Granat MH. Methods for objective measure, quantification and analysis of sedentary behaviour and inactivity. Gait Posture. 2010;31(1):82–6.
Article
CAS
PubMed
Google Scholar
Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc. 2011;43(8):1561–7.
Article
PubMed
Google Scholar
Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0: The Cochrane Collaboration; 2011.
Aguilar-Farias N, Brown WJ, Olds TS, Peeters GMEE. Validity of self-report methods for measuring sedentary behaviour in older adults. J Sci Med Sport 2015;18(6):662-6.
Article
PubMed
Google Scholar
Chastin SFM, Dontje ML, Skelton DA, Cukic I, Shaw RJ, Gill JMR, et al. Systematic comparative validation of self-report measures of sedentary time against an objective measure of postural sitting (activPAL). Int J Behav Nutr Phys Act. 2018;15(1):21.
Chu AHY, Ng SHX, Koh D, Muller-Riemenschneider F. Domain-specific adult sedentary behaviour questionnaire (ASBQ) and the GPAQ single-item question: A reliability and validity study in an Asian population. Int J Environ Res Public Health. 2018;15(4):739.
Article
PubMed Central
Google Scholar
Matthews CE, Kozey Keadle S, Moore SC, Schoeller DS, Carroll RJ, Troiano RP, et al. Measurement of active and sedentary behavior in context of large epidemiologic studies. Med Sci Sports Exerc. 2018;50(2):266–76.
Article
PubMed
PubMed Central
Google Scholar
Prince SA, Reid RD, Bernick J, Clarke AE, Reed JL. Single versus multi-item self-assessment of sedentary behaviour: A comparison with objectively measured sedentary time in nurses. J Sci Med Sport. 2018;21(9):925–9.
Article
PubMed
Google Scholar
Rees-Punia E, Matthews CE, Evans EM, Keadle SK, Anderson RL, Gay JL, et al. Demographic-specific validity of the Cancer Prevention Study-3 Sedentary Time Survey. Med Sci Sports Exerc. 2019;51(1):41–8.
Article
PubMed
PubMed Central
Google Scholar
Ruiz-Casado A, Alejo LB, Santos-Lozano A, Soria A, Ortega MJ, Pagola I, et al. Validity of the Physical Activity Questionnaires IPAQ-SF and GPAQ for cancer survivors: Insights from a Spanish cohort. Int J Sports Med. 2016;37(12):979–85.
Article
CAS
PubMed
Google Scholar
Dempsey PD, Thyfault JP. Chapter 5: Physiological Responses to Sedentary Behaviour. In: Leitzmann MF, Jochem C, Schmid D, editors. Sedentary Behaviour Epidemiology. Switzerland: Springer; 2018.
Google Scholar
Buman MP, Winkler EA, Kurka JM, Hekler EB, Baldwin CM, Owen N, et al. Reallocating time to sleep, sedentary behaviors, or active behaviors: associations with cardiovascular disease risk biomarkers, NHANES 2005-2006. Am J Epidemiol. 2014;179(3):323–34.
Article
PubMed
Google Scholar
Prince SA, Saunders TJ, Gresty K, Reid RD. A comparison of the effectiveness of physical activity and sedentary behaviour interventions in reducing sedentary time in adults: a systematic review and meta-analysis of controlled trials. Obes Rev. 2014;15(11):905–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36.
Article
PubMed
Google Scholar
Abraham TL. Comparison of accelerometers and a self-report record. Ann Arbor: Arizona State University; 2009.
Google Scholar
Adams MA, Todd M, Kurka J, Conway TL, Cain KL, Frank LD, et al. Patterns of Walkability, Transit, and Recreation Environment for Physical Activity. Am J Prev Med. 2015;49(6):878–87.
Article
PubMed
PubMed Central
Google Scholar
Aguilar-Farias N, Leppe ZJ. Is a single question of the Global Physical Activity Questionnaire (GPAQ) valid for measuring sedentary behaviour in the Chilean population? J Sports Sci. 2017;35(16):1652–7.
PubMed
Google Scholar
Aittasalo M, Livson M, Lusa S, Romo A, Vähä-Ypyä H, Mänttäri A, et al. Moving to business - changes in physical activity and sedentary behavior after multilevel intervention in small and medium-size workplaces. BMC Public Health. 2017;17:1–14.
Article
Google Scholar
Alkahtani SA. Convergent validity: agreement between accelerometry and the Global Physical Activity Questionnaire in college-age Saudi men. BMC Res Notes. 2016;9(1):436.
Article
PubMed
PubMed Central
Google Scholar
Anjana RM, Sudha V, Lakshmipriya N, Subhashini S, Pradeepa R, Geetha L, et al. Reliability and validity of a new physical activity questionnaire for India. Int J Behav Nutr Phys Act. 2015;12(1):40.
Article
PubMed
PubMed Central
Google Scholar
Barone Gibbs B, Brach JS, Byard T, Creasy S, Davis KK, McCoy S, et al. Reducing sedentary behavior versus increasing moderate-to-vigorous intensity physical activity in older adults: A 12-week randomized, clinical trial. J Aging Health. 2017;29(2):247–67.
Article
PubMed
Google Scholar
Barwais FA, Cuddihy TF, Washington T, Tomson LM, Brymer E. Development and validation of a new self-report instrument for measuring sedentary behaviors and light-intensity physical activity in adults. J Phys Act Health. 2014;11(6):1097–104.
Article
PubMed
Google Scholar
Benitez-Porres J, Delgado M, Ruiz JR. Comparison of physical activity estimates using International Physical Activity Questionnaire (IPAQ) and accelerometry in fibromyalgia patients: the Al-Andalus study. J Sports Sci. 2013;31(16):1741–52.
Article
PubMed
Google Scholar
Biddle S, Edwardson C, Davies M, Gorely T, Khunti K, Nimmo M, et al. Agreement between accelerometer-determined sedentary time and self-report measures: Project STAND. J Sci Med Sport. 2012;15(SUPPL.1):S67–S8.
Article
Google Scholar
Biswas A, Oh PI, Faulkner GE, Alter DA. A prospective study examining the influence of cardiac rehabilitation on the sedentary time of highly sedentary, physically inactive patients. Ann Phys Rehabil Med. 2018;61(4):207–14.
Article
CAS
PubMed
Google Scholar
Blikman T, Stevens M, Reininga I, Van Den Akker-Scheek I, Bulstra SK. Test-retest reliability and concurrent validity of the International Physical Activity Questionnaire (IPA Q) within patients after total hip arthroplasty. HIP Int. 2014;24(5):524.
Google Scholar
Bond DS, Thomas JG, Unick JL, Raynor HA, Vithiananthan S, Wing RR. Self-reported and objectively measured sedentary behavior in bariatric surgery candidates. Surg Obes Relat Dis. 2013;9(1):123–8.
Article
PubMed
Google Scholar
Bonn SE, Bergman P, Trolle Lagerros Y, Sjolander A, Balter K. A validation study of the Web-Based Physical Activity Questionnaire Active-Q against the GENEA accelerometer. JMIR Res Protoc. 2015;4(3):e86.
Article
PubMed
PubMed Central
Google Scholar
Bruening M, van Woerden I, Todd M, Brennhofer S, Laska MN, Dunton G. A mobile ecological momentary sssessment tool (devilSPARC) for nutrition and physical activity behaviors in college students: A validation study. J Med Internet Res. 2016;18(7):e209.
Article
PubMed
PubMed Central
Google Scholar
Bueno-Antequera J, Oviedo-Caro MA, Munguia-Izquierdo D. Sedentary behaviour patterns in outpatients with severe mental illness: a cross-sectional study using objective and self-reported methods. The PsychiActive project. Psychiatr Res. 2017;255:146–52.
Article
Google Scholar
Busschaert C, De Bourdeaudhuij I, Van Holle V, Chastin SF, Cardon G, De Cocker K. Reliability and validity of three questionnaires measuring context-specific sedentary behaviour and associated correlates in adolescents, adults and older adults. Int J Behav Nutr Phys Act. 2015;12:117.
Article
PubMed
PubMed Central
Google Scholar
Camhi SM, Crouter SE, Hayman LL, Lichtenstein AH, Must A. Physical activity and sedentary behavior in metabolically healthy obese young women. Circulation Conference: American Heart Association's Epidemiology and Prevention/Lifestyle and Cardiometabolic Health. 2015;131(SUPPL. 1).
Celis-Morales CA, Perez-Bravo F, Ibanez L, Salas C, Bailey ME, Gill JM. Objective vs. self-reported physical activity and sedentary time: effects of measurement method on relationships with risk biomarkers. PLoS One. 2012;7(5):e36345.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cerin E, Barnett A, Cheung MC, Sit CHP, Macfarlane DJ, Chan WM. Reliability and validity of the IPAQ-L in a sample of Hong Kong urban older adults: does neighborhood of residence matter? J Aging Phys Act. 2012;20(4):402–20.
Article
PubMed
Google Scholar
Cerin E, Cain KL, Oyeyemi AL, Owen N, Conway TL, Cochrane T, et al. Correlates of agreement between accelerometry and self-reported physical activity. Med Sci Sports Exerc. 2016;48(6):1075–84.
Article
PubMed
PubMed Central
Google Scholar
Chapman JJ, Fraser SJ, Brown WJ, Burton NW. Physical activity and sedentary behaviour of adults with mental illness. J Sci Med Sport. 2016;19(7):579–84.
Article
PubMed
Google Scholar
Chasan-Taber L, Schmidt MD, Roberts DE, Hosmer D, Markenson G, Freedson PS. Development and validation of a pregnancy physical activity questionnaire. Med Sci Sports Exerc. 2004;36(10):1750–60.
Article
PubMed
Google Scholar
Chastin SF, Culhane B, Dall PM. Comparison of self-reported measure of sitting time (IPAQ) with objective measurement (activPAL). Physiol Measure. 2014;35(11):2319–28.
Article
CAS
Google Scholar
Chau JY, Van Der Ploeg HP, Dunn S, Kurko J, Bauman AE. Validity of the occupational sitting and physical activity questionnaire. Med Sci Sports Exerc. 2012;44(1):118–25.
Article
PubMed
Google Scholar
Chau JY, van der Ploeg HP, Dunn S, Kurko J, Bauman AE. A tool for measuring workers' sitting time by domain: the Workforce Sitting Questionnaire. Br J Sports Med. 2011;45(15):1216–22.
Article
PubMed
Google Scholar
Chau JY, Daley M, Dunn S, Srinivasan A, Do A, Bauman AE, et al. The effectiveness of sit-stand workstations for changing office workers’ sitting time: results from the Stand@Work randomized controlled trial pilot. Int J Behav Nutr Phys Act. 2014;11:33–50.
Article
Google Scholar
Chinapaw MJM, Slootmaker SM, Schuit AJ, Van Zuidam M, Van Mechelen W. Reliability and validity of the activity questionnaire for adults and adolescents (AQuAA). BMC Med Res Method. 2009;9(1):58.
Article
Google Scholar
Clark BK, Lynch BM, Winkler EAH, Gardiner PA, Healy GN, Dunstan DW, et al. Validity of a multi-context sitting questionnaire across demographically diverse population groups: AusDiab3. Int J Behav Nutr Phys Act. 2015;12(1):148.
Article
PubMed
PubMed Central
Google Scholar
Clark BK, Pavey TG, Lim RF, Gomersall SR, Brown WJ. Past-day recall of sedentary time: Validity of a self-reported measure of sedentary time in a university population. J Sci Med Sport. 2016;19(3):237–41.
Article
PubMed
Google Scholar
Clark BK, Thorp AA, AhW E, Gardiner PA, Healy GN, Owen N, et al. Validity of self-reported measures of workplace sitting time and breaks in sitting time. Med Sci Sports Exerc. 2011;43(10):1907–12.
PubMed
Google Scholar
Clark BK, Winkler E, Healy GN, Gardiner PG, Dunstan DW, Owen N, et al. Adults' past-day recall of sedentary time: Reliability, validity, and responsiveness. Med Sci Sports Exerc. 2013;45(6):1198–207.
Article
PubMed
Google Scholar
Clayton J. Comparison of Objectively and subjectively measured sedentary behavior in men with prostate cancer and a history of androgen-deprivation therapy use. Ann Arbor: University of Washington; 2016.
Google Scholar
Cleland CL, Hunter RF, Kee F, Cupples ME, Sallis JF, Tully MA. Validity of the global physical activity questionnaire (GPAQ) in assessing levels and change in moderate-vigorous physical activity and sedentary behaviour. BMC Public Health. 2014;14:1255.
Article
PubMed
PubMed Central
Google Scholar
Cleland C, Ferguson S, Ellis G, Hunter RF. Validity of the International Physical Activity Questionnaire (IPAQ) for assessing moderate-to-vigorous physical activity and sedentary behaviour of older adults in the United Kingdom. BMC Med Res Method. 2018;18(1):176.
Article
Google Scholar
Clemes SA, David BM, Zhao Y, Han X, Brown W. Validity of two self-report measures of sitting time. J Phys Act Health. 2012;9(4):533–9.
Article
PubMed
Google Scholar
Conroy DE, Maher JP, Elavsky S, Hyde AL, Doerksen SE. Sedentary behavior as a daily process regulated by habits and intentions. Health Psychol. 2013;32(11):1149–57.
Article
PubMed
PubMed Central
Google Scholar
Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-Country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95.
Article
PubMed
Google Scholar
Curry WB, Thompson JL. Comparability of accelerometer- and IPAQ-derived physical activity and sedentary time in South Asian women: A cross-sectional study. Eur J Sport Sci. 2015;15(7):655–62.
Article
PubMed
Google Scholar
Dahl-Petersen IK, Hansen AW, Bjerregaard P, Jkrgensen ME, Brage S. Validity of the international physical activity questionnaire in the arctic. Med Sci Sports Exerc. 2013;45(4):728–36.
Article
PubMed
Google Scholar
De Cocker K, De Bourdeaudhuij I, Cardon G, Vandelanotte C, De Cocker PK. The effectiveness of a web-based computer-tailored intervention on workplace sitting: a randomized controlled trial. J Med Inter Res. 2016;18(5):e96–e109.
Google Scholar
De Greef KP, Deforche BI, Ruige JB, Bouckaert JJ, Tudor-Locke CE, Kaufman JM, et al. The effects of a pedometer-based behavioral modification program with telephone support on physical activity and sedentary behavior in type 2 diabetes patients. Patient Educ Counsel. 2011;84(2):275–9.
Article
Google Scholar
Doyle C, Khan A, Burton N. Reliability and validity of a self-administered Arabic version of the global physical activity questionnaire (GPAQ-A). J Sports Med Phys Fitness. 2018;10:10.
Google Scholar
Duncan MJ, Arbour-Nicitopoulos K, Subramaniapillai M, Remington G, Faulkner G. Revisiting the International Physical Activity Questionnaire (IPAQ): Assessing sitting time among individuals with schizophrenia. Psychiatr Res. 2019;271:311–8.
Article
Google Scholar
Dyrstad SM, Hansen BH, Holme IM, Anderssen SA. Comparison of self-reported versus accelerometer-measured physical activity. Med Sci Sports Exerc. 2014;46(1):99–106.
Article
PubMed
Google Scholar
Ekblom Ö, Ekblom-Bak E, Bolam KA, Ekblom B, Schmidt C, Söderberg S, et al. Concurrent and predictive validity of physical activity measurement items commonly used in clinical settings--data from SCAPIS pilot study. BMC Public Health. 2015;15(1):1–10.
Article
Google Scholar
Ekelund U, Sepp H, Brage S, Becker W, Jakes R, Hennings M, et al. Criterion-related validity of the last 7-day, short form of the International Physical Activity Questionnaire in Swedish adults. Public Health Nutr. 2006;9(2):258–65.
Article
PubMed
Google Scholar
Ellingson LD, Colbert LH, Cook DB. Physical activity is related to pain sensitivity in healthy women. Med Sci Sports Exerc. 2012;44(7):1401–6.
Article
PubMed
Google Scholar
Elramli A Effectiveness of community based physical activity on step count and sedentary behaviour in people with rheumatoid arthritis within the first five years of diagnosis. Ann Arbor: University of Glasgow (United Kingdom); 2017.
Emadian A, Thompson J. A mixed-methods examination of physical activity and sedentary time in overweight and obese South Asian men living in the United Kingdom. Int J Environ Res Public Health. 2017;14(4):27.
Article
Google Scholar
English C, Healy GN, Coates A, Lewis L, Olds T, Bernhardt J. Sitting and activity time in people with stroke. Phys Ther. 2016;96(2):193–201.
Article
PubMed
Google Scholar
Fitzsimons C, Kirk A, Murphy M, Mutrie N. Agreement between the IPAQ-long weekday sitting item and the activPALTM activity monitor in Scottish adults. J Sci Med Sport. 2012;15(SUPPL.1):S295–S6.
Article
Google Scholar
Fitzsimons CF, Kirk A, Baker G, Michie F, Kane C, Mutrie N. Using an individualised consultation and activPAL [TM] feedback to reduce sedentary time in older Scottish adults: results of a feasibility and pilot study. Prev Med. 2013;57(5):718–20.
Article
PubMed
Google Scholar
Fjeldsoe BS, Marshall AL, Miller YD. Measurement properties of the Australian women's activity survey. Med Sci Sports Exerc. 2009;41(5):1020–33.
Article
PubMed
Google Scholar
Fowles JR, O'Brien MW, Wojcik WR, d'Entremont L, Shields CA. A pilot study: Validity and reliability of the CSEP-PATH PASB-Q and a new leisure time physical activity questionnaire to assess physical activity and sedentary behaviours. Appl Physiol Nutr Metab. 2017;42(6):677–80.
Article
PubMed
Google Scholar
French SA, Harnack LJ, Toomey TL, Hannan PJ. Association between body weight, physical activity and food choices among metropolitan transit workers. Int J Behav Nutr Phys Act. 2007;4:52.
Article
PubMed
PubMed Central
Google Scholar
Gao Y, Cronin NJ, Nevala N, Finni T. Validity of long-term and short-term recall of occupational sitting time in Finnish and Chinese office workers. J Sport Health Sci. 2017.
Gardiner PA, Clark BK, Healy GN, Eakin EG, Winkler EAH, Owen N. Measuring older adults' sedentary time: Reliability, validity, and responsiveness. Med Sci Sports Exerc. 2011;43(11):2127–33.
Article
PubMed
Google Scholar
Gennuso KP, Matthews CE, Colbert LH. Reliability and validity of 2 self-report measures to assess sedentary behavior in older adults. J Phys Act Health. 2015;12(5):727–32.
Article
PubMed
Google Scholar
Gennuso KP, Thraen-Borowski KM, Gangnon RE, Colbert LH. Patterns of sedentary behavior and physical function in older adults. Aging Clin Exper Res. 2016;28(5):943–50.
Article
Google Scholar
Gibbs BB, King WC, Davis KK, Rickman AD, Rogers RJ, Wahed A, et al. Objective vs. Self-report sedentary behavior in overweight and obese young adults. J Phys Act Health. 2015;12(12):1551–7.
Article
PubMed Central
Google Scholar
Gilbert AL, Lee J, Ma M, Semanik PA, DiPietro L, Dunlop DD, et al. Comparison of subjective and objective measures of sedentary behavior using the Yale Physical Activity Survey and accelerometry in patients with rheumatoid arthritis. J Phys Act Health. 2016;13(4):371–6.
Article
PubMed
Google Scholar
Golubic R, May AM, Benjaminsen Borch K, Overvad K, Charles MA, Diaz MJ, et al. Validity of electronically administered Recent Physical Activity Questionnaire (RPAQ) in ten European countries. PLoS One. 2014;9(3):e92829.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gomersall SR, Pavey TG, Clark BK, Jasman A, Brown WJ. Validity of a self-report recall tool for estimating sedentary behavior in adults. J Phys Act Health. 2015;12(11):1485–91.
Article
PubMed
Google Scholar
Gordon A. A theory-based pilot study to decrease sitting time in the workplace. Ann Arbor: Arizona State University; 2013.
Google Scholar
Grimm EK, Swartz AM, Hart T, Miller NE, Strath SJ. Comparison of the IPAQ-Short Form and accelerometry predictions of physical activity in older adults. J Aging Phys Act. 2012;20(1):64–79.
Article
PubMed
Google Scholar
Gupta N, Christiansen CS, Hanisch C, Bay H, Burr H, Holtermann A. Is questionnaire-based sitting time inaccurate and can it be improved? A cross-sectional investigation using accelerometer-based sitting time. BMJ Open. 2017;7(1):e013251.
Article
PubMed
PubMed Central
Google Scholar
Haakstad LA, Gundersen I, Bo K. Self-reporting compared to motion monitor in the measurement of physical activity during pregnancy. Acta Obstet Gynecol Scand. 2010;89(6):749–56.
Article
PubMed
Google Scholar
Hagstromer M, Ainsworth BE, Oja P, Sjostrom M. Comparison of a subjective and an objective measure of physical activity in a population sample. J Phys Act Health. 2010;7(4):541–50.
Article
PubMed
Google Scholar
Hansen AW, Dahl-Petersen I, Helge JW, Brage S, Gronbaek M, Flensborg-Madsen T. Validation of an internet-based long version of the international physical activity questionnaire in danish adults using combined accelerometry and heart rate monitoring. J Phys Act Health. 2014;11(3):654–64.
Article
PubMed
Google Scholar
Headley S, Hutchinson J, Wooley S, Dempsey K, Phan K, Spicer G, et al. Subjective and objective assessment of sedentary behavior among college employees. BMC Public Health. 2018;18(1).
Hekler EB, Buman MP, Haskell WL, Conway TL, Cain KL, Sallis JF, et al. Reliability and validity of CHAMPS self-reported sedentary-to-vigorous intensity physical activity in older adults. J Phys Act Health. 2012;9(2):225–36.
Article
PubMed
PubMed Central
Google Scholar
Herrmann SD, Heumann KJ, Der Ananian CA, Ainsworth BE. Validity and reliability of the Global Physical Activity Questionnaire (GPAQ). Measure Phys Educ Exerc Sci. 2013;17(3):221–35.
Article
Google Scholar
Hoos T, Espinoza N, Marshall S, Arredondo EM. Validity of the Global Physical Activity Questionnaire (GPAQ) in adult latinas. J Phys Act Health. 2012;9(5):698–705.
Article
PubMed
PubMed Central
Google Scholar
Hurtig-Wennlof A, Hagstromer M, Olsson LA. The International Physical Activity Questionnaire modified for the elderly: aspects of validity and feasibility. Public Health Nutr. 2010:1–8.
Hutchison K. Physical Activity in Fibromyalgia: Accelerometer versus self-report. Ann Arbor: California State University, Fullerton; 2018.
Google Scholar
Igelström H, Emtner M, Lindberg E, Åsenlöf P. Level of agreement between methods for measuring moderate to vigorous physical activity and sedentary time in people with obstructive sleep apnea and obesity. Phys Ther. 2013;93(1):50–9.
Article
PubMed
Google Scholar
Innerd P, Harrison R, Coulson M. Using open source accelerometer analysis to assess physical activity and sedentary behaviour in overweight and obese adults. BMC Public Health. 2018;18(1):543.
Article
PubMed
PubMed Central
Google Scholar
Ishii K, Shibata A, Kurita S, Yano S, Inoue S, Sugiyama T, et al. Validity and reliability of Japanese-language self-reported measures for assessing adults domain-specific sedentary time. J Epidemiol. 2018;28(3):149–55.
Article
PubMed
PubMed Central
Google Scholar
Jancey J, Tye M, McGann S, Blackford K, Lee AH. Application of the Occupational Sitting and Physical Activity Questionnaire (OSPAQ) to office based workers. BMC Public Health. 2014;14:762.
Article
PubMed
PubMed Central
Google Scholar
Kim Y, Welk GJ. The accuracy of the 24-h activity recall method for assessing sedentary behaviour: the physical activity measurement survey (PAMS) project. J Sports Sci. 2017;35(3):255–61.
Article
PubMed
Google Scholar
King AC, Hekler EB, Grieco LA, Winter SJ, Sheats JL, Buman MP, et al. Effects of three motivationally targeted mobile device applications on initial physical activity and sedentary behavior change in midlife and older adults: A randomized trial. PLoS One. 2016;11(6):e0156370.
Article
PubMed
PubMed Central
CAS
Google Scholar
Knell G, Gabriel KP, Businelle MS, Shuval K, Wetter DW, Kendzor DE. Ecological momentary assessment of physical activity: validation study. J Med Intern Res. 2017;19(7):e253.
Google Scholar
Kohler S, Behrens G, Olden M, Baumeister SE, Horsch A, Fischer B, et al. Design and evaluation of a computer-based 24-hour physical activity recall (cpar24) instrument. J Med Intern Res. 2017;19(5):e186.
Google Scholar
Kozey-Keadle S, Libertine A, Staudenmayer J, Freedson P. The feasibility of reducing and measuring sedentary time among overweight, non-exercising office workers. J Obes. 2012;2012:282303.
Article
PubMed
Google Scholar
Kozo J, Kerr J, Saelens BE, Sallis JF, Conway TL, Cain K, et al. Sedentary behaviors of adults in relation to neighborhood walkability and income. Health Psychol. 2012;31(6):704–13.
Article
PubMed
Google Scholar
Laeremans M, Dons E, Avila-Palencia I, Carrasco-Turigas G, Orjuela JP, Anaya E, et al. Physical activity and sedentary behaviour in daily life: A comparative analysis of the Global Physical Activity Questionnaire (GPAQ) and the SenseWear armband. PLoS One. 2017;12(5):e0177765.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lagersted-Olsen J, Korshoj M, Skotte J, Carneiro IG, Sogaard K, Holtermann A. Comparison of objectively measured and self-reported time spent sitting. Int J Sports Med. 2014;35(6):534–40.
CAS
PubMed
Google Scholar
Larsson K, Kallings LV, Ekblom O, Blom V, Andersson E, Ekblom MM. Criterion validity and test-retest reliability of SED-GIH, a single item question for assessment of daily sitting time. BMC Public Health. 2019;19(1):17.
Article
PubMed
PubMed Central
Google Scholar
Legge A, Blanchard C, Hanly J. Physical activity and sedentary behaviour in patients with systemic lupus erythematosus and rheumatoid arthritis. J Rheumatol. 2017;44(6):880–1.
Google Scholar
Lewis LK, Rowlands AV, Gardiner PA, Standage M, English C, Olds T. Small Steps: Preliminary effectiveness and feasibility of an incremental goal-setting intervention to reduce sitting time in older adults. Maturitas. 2016;85:64–70.
Article
CAS
PubMed
Google Scholar
Lewis LS, Hernon J, Clark A, Saxton JM. Validation of the IPAQ against different accelerometer cut-points in older cancer survivors and adults at risk of cancer. J Aging Phys Activity. 2018;26(1):34–40.
Article
Google Scholar
Libertine A, Kozey-Keadle S, Freedson PS. Examining The accuracy of self-reported sitting time questionnaires compared to an objective measurement. Med Sci Sports Exerc. 2011;43:604–5.
Article
Google Scholar
Lopez-Rodriguez C, Laguna M, Gomez-Cabello A, Gusi N, Espino L, Villa G, et al. Validation of the self-report EXERNET questionnaire for measuring physical activity and sedentary behavior in elderly. Arch Gerontol Geriatr. 2017;69:156–61.
Article
PubMed
Google Scholar
Loprinzi PD, Kane CJ. Exercise and cognitive function: A randomized controlled trial examining acute exercise and free-living physical activity and sedentary effects. Mayo Clinic Proceedings. 2015;90(4):450–60.
Article
PubMed
Google Scholar
Lucas JM, Schmidt MD, Das BM, Evans EM. Agreement between self-reported and objective sitting times varies by day of week among college freshmen. Med Sci Sports Exerc. 2013;45:S323–S4.
Google Scholar
Mader U, Martin BW, Schutz Y, Marti B. Validity of four short physical activity questionnaires in middle-aged persons. Med Sci Sports Exerc. 2006;38(7):1255–66.
Article
PubMed
Google Scholar
Maher JP, Conroy DE. Daily life satisfaction in older adults as a function of (in) activity. J Gerontol Series B. 2017;72(4):593–602.
Google Scholar
Marmeleira J, Laranjo L, Marques O, Batalha N. Criterion-related validity of the short form of the International Physical Activity Questionnaire in adults who are blind. J Visual Impairment Blindness. 2013;107(5):375–81.
Article
Google Scholar
Marshall AL, Miller YD, Burton NW, Brown WJ. Measuring total and domain-specific sitting: A study of reliability and validity. Med Sci Sports Exerc. 2010;42(6):1094–102.
PubMed
Google Scholar
Marshall S, Kerr J, Carlson J, Cadmus-Bertram L, Patterson R, Wasilenko K, et al. Patterns of weekday and weekend sedentary behavior among older adults. J Aging Phys Activity. 2015;23(4):534–41.
Article
Google Scholar
Matsuo T, Sasai H, So R, Ohkawara K. Percentage-method improves properties of Workers' Sitting- and Walking-Time Questionnaire. J Epidemiol. 2016;26(8):405–12.
Article
PubMed
Google Scholar
Matsuzaki M, Sullivan R, Ekelund U, Krishna KV, Kulkarni B, Collier T, et al. Development and evaluation of the Andhra Pradesh Children and Parent Study Physical Activity Questionnaire (APCAPS-PAQ): a cross-sectional study. BMC Public Health. 2016;16:48.
Article
PubMed
PubMed Central
Google Scholar
Matthews CE, Freedson PS. Field trial of a three-dimensional activity monitor: Comparison with self report. Med Sci Sports Exerc. 1995;27(7):1071–8.
Article
CAS
PubMed
Google Scholar
Matthews CE, Keadle SK, Sampson J, Lyden K, Bowles HR, Moore SC, et al. Validation of a previous-day recall measure of active and sedentary behaviors. Med Sci Sports Exer. 2013;45(8):1629–38.
Article
Google Scholar
Matthews L, Hankey C, Penpraze V, Boyle S, Macmillan S, Miller S, et al. Agreement of accelerometer and a physical activity questionnaire in adults with intellectual disabilities. Prev Med. 2011;52(5):361–4.
Article
PubMed
Google Scholar
Matton L, Wijndaele K, Duvigneaud N, Duquet W, Philippaerts R, Thomis M, et al. Reliability and validity of the flemish physical activity computerized questionnaire in adults. Res Q Exerc Sport. 2007;78(4):293–306.
Article
PubMed
Google Scholar
Mazzoni AS, Nordin K, Berntsen S, Demmelmaier I, Igelstrom H. Comparison between logbook-reported and objectively-assessed physical activity and sedentary time in breast cancer patients: an agreement study. BMC Sports Sci Med Rehabil. 2017;9:8.
Article
PubMed
PubMed Central
Google Scholar
McNeil J, Farris MS, Ruan Y, Merry H, Lynch BM, Matthews CE, et al. Effects of prescribed aerobic exercise volume on physical activity and sedentary time in postmenopausal women: A randomized controlled trial. Int J Behav Nutr Phys Act. 2018;15(1):27.
Article
PubMed
PubMed Central
Google Scholar
Melville CA, Boyle S, Miller S, Macmillan S, Penpraze V, Pert C, et al. An open study of the effectiveness of a multi-component weight-loss intervention for adults with intellectual disabilities and obesity. Br J Nutr. 2011;105(10):1553–62.
Article
CAS
PubMed
Google Scholar
Menezes D, Laranjo L, Marmeleira J. Criterion-related validity of the short form of the international physical activity questionnaire in adults who are Deaf. Disabil Health J. 2017;10(1):33–8.
Article
PubMed
Google Scholar
Mensah K, Maire A, Oppert JM, Dugas J, Charreire H, Weber C, et al. Assessment of sedentary behaviors and transport-related activities by questionnaire: a validation study. BMC Public Health. 2016;16:753.
Article
PubMed
PubMed Central
Google Scholar
Metcalf KM, Baquero BI, Coronado Garcia ML, Francis SL, Janz KF, Laroche HH, et al. Calibration of the global physical activity questionnaire to Accelerometry measured physical activity and sedentary behavior. BMC Public Health. 2018;18(1):412.
Article
PubMed
PubMed Central
Google Scholar
Meyer JD. Physical Activity, Exercise and BDNF in Depressed Patients – A Study of the Acute Effects of Exercise Intensity on Mood. Ann Arbor: The University of Wisconsin - Madison; 2015.
Google Scholar
Moran F Perceived barriers, facilitators and patterns of physical activity of older old adults living in assisted retirement accommodation. Ann Arbor: Western Sydney University (Australia); 2016.
Moss SJ, Czyz SH. Level of agreement between physical activity levels measured by ActiHeart and the International Physical Activity Questionnaire in persons with intellectual disability. Disabil Rehabil. 2018;40(3):360–6.
Article
PubMed
Google Scholar
Mumu SJ, Ali L, Barnett A, Merom D. Validity of the global physical activity questionnaire (GPAQ) in Bangladesh. BMC Public Health. 2017;17(1):650.
Article
PubMed
PubMed Central
Google Scholar
Murillo-Rabago I, Armendariz-Anguiano AL, Jimenez-Cruz A, Bacardi-Gascon M. Validity of the international physical activity questionnaire among mexican adults. Obes. 2010;2:S132–S3.
Google Scholar
O'Neill B, McDonough SM, Wilson JJ, Bradbury I, Hayes K, Kirk A, et al. Comparing accelerometer, pedometer and a questionnaire for measuring physical activity in bronchiectasis: A validity and feasibility study? Resp Res. 2017;18(1):16.
Article
CAS
Google Scholar
Oostdam N, van Mechelen W, Van Poppel M. Validation and responsiveness of the AQuAA for measuring physical activity in overweight and obese pregnant women. J Sci Med Sport. 2013;16(5):412–6.
Article
PubMed
Google Scholar
Otten JJ, Littenberg B, Harvey-Berino JR. Relationship between Self-report and an objective measure of television-viewing time in adults. Obes. 2010;18(6):1273–5.
Article
Google Scholar
Oviedo-Caro MA, Bueno-Antequera J, Munguia-Izquierdo D. Measuring sedentary behavior during pregnancy: comparison between self-reported and objective measures. Matern Child Health J. 2018;22(7):968–77.
Article
PubMed
Google Scholar
Oyeyemi AL, Umar M, Oguche F, Aliyu SU, Oyeyemi AY. Accelerometer-determined physical activity and its comparison with the international physical activity questionnaire in a sample of Nigerian adults. PLoS One. 2014;9(1):e87233.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pedersen SJ, Kitic CM, Bird ML, Mainsbridge CP, Cooley PD. Is self-reporting workplace activity worthwhile? Validity and reliability of occupational sitting and physical activity questionnaire in desk-based workers. BMC Public Health. 2016;16(1):836.
Article
PubMed
PubMed Central
Google Scholar
Pedisic Z, Bennie JA, Timperio AF, Crawford DA, Dunstan DW, Bauman AE, et al. Workplace Sitting Breaks Questionnaire (SITBRQ): an assessment of concurrent validity and test-retest reliability. BMC Public Health. 2014;14:1249.
Article
PubMed
PubMed Central
Google Scholar
Peters TM, Shu XO, Moore SC, Xiang YB, Yang G, Ekelund U, et al. Validity of a physical activity questionnaire in Shanghai. Med Sci Sports Exerc. 2010;42(12):2222–30.
Article
PubMed
PubMed Central
Google Scholar
Pinto B, Dunsiger S, Stein K. Does a peer-led exercise intervention affect sedentary behavior among breast cancer survivors? Psycho-Oncol. 2017;26(11):1907–13.
Article
Google Scholar
Powell JL, Agne AA, Willig A, Cherrington AL. Self-report versus objective measures of physical activity in overweight/obese latina immigrants in alabama. Obes. 2011;1:S201–S2.
Google Scholar
Prince SA, Reid RD, Reed JL. Comparison of self-reported and objectively measured levels of sitting and physical activity and associations with markers of health in cardiac rehabilitation patients. Eur J Prev Cardiol. 2019;26(6):653–6.
Article
PubMed
Google Scholar
Riviere F, Widad FZ, Speyer E, Erpelding ML, Escalon H, Vuillemin A. Reliability and validity of the French version of the global physical activity questionnaire. J Sport Health Sci. 2018;7(3):339–45.
Article
PubMed
Google Scholar
Roman-ViÑAs B, Serra-Majem L, HagstrÖMer M, Ribas-Barba L, SjÖStrÖM M, Segura-Cardona R. International Physical Activity Questionnaire: Reliability and validity in a Spanish population. Eur J Sport Sci. 2010;10(5):297–304.
Article
Google Scholar
Rosenberg DE, Norman GJ, Wagner N, Patrick K, Calfas KJ, Sallis JF. Reliability and validity of the Sedentary Behavior Questionnaire (SBQ) for adults. J Phys Act Health. 2010;7(6):697–705.
Article
PubMed
Google Scholar
Rosenberg DE, Gell NM, Jones SMW, Renz A, Kerr J, Gardiner PA, et al. The feasibility of reducing sitting time in overweight and obese older adults. Health Educ Behav. 2015;42(5):669–76.
Article
PubMed
PubMed Central
Google Scholar
Rosenberg DE, Bellettiere J, Gardiner PA, Villarreal VN, Crist K, Kerr J. Independent associations between sedentary behaviors and mental, cognitive, physical, and functional health among older adults in retirement communities. J Gerontol Series A. 2016;71(1):78–83.
Article
Google Scholar
Ruiz-Casado A, Brea L, Soria A, Ortega MJ, Cebolla H, Fiuza C, et al. Concurrent validity and accuracy of the shortform of international physical activity questionnaire (SF-IPAQ) in a population of Spanish cancer survivors. J Clin Oncol Conf. 2015;33(15 SUPPL. 1).
Article
Google Scholar
Ryan CG, McDonough S, Kirwan JP, Leveille S, Martin DJ. An investigation of association between chronic musculoskeletal pain and cardiovascular disease in the Health Survey for England (2008). Eur J Pain. 2014;18(5):740–50.
Article
CAS
PubMed
Google Scholar
Ryan DJ, Wullems JA, Stebbings GK, Morse CI, Stewart CE, Onambele-Pearson GL. Reliability and validity of the international physical activity questionnaire compared to calibrated accelerometer cut-off points in the quantification of sedentary behaviour and physical activity in older adults. PLoS One. 2018;13(4):e0195712.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ryde GC, Gorely T, Jepson R, Gray C, Shepherd A, Mackison D, et al. How active are women who play bingo: a cross-sectional study from the Well!Bingo project. BMC Women Health. 2017;17:1–8.
Article
Google Scholar
Sasaki JE, Motl RW, McAuley E. Validity of the Marshall Sitting Questionnaire in people with multiple sclerosis. J Sports Sci. 2018:1–7.
Schaller A, Rudolf K, Dejonghe L, Grieben C, Froboese I. Influencing factors on the overestimation of self-reported physical activity: a cross-sectional analysis of low back pain patients and healthy controls. BioMed Res Int. 2016;2016:1497213.
Article
PubMed
PubMed Central
Google Scholar
Scheers T, Philippaerts R, Lefevre J. Assessment of physical activity and inactivity in multiple domains of daily life: A comparison between a computerized questionnaire and the SenseWear Armband complemented with an electronic diary. Int J Behav Nutr Phys Act. 2012;9:71.
Article
PubMed
PubMed Central
Google Scholar
Segura-Jimenez V, Munguia-Izquierdo D, Camiletti-Moiron D, Alvarez-Gallardo IC, Ortega FB, Ruiz JR, et al. Comparison of the International Physical Activity Questionnaire (IPAQ) with a multi-sensor armband accelerometer in women with fibromyalgia: The al-andalus project. Clin Exper Rheumatol. 2013;31(SUPPL.79):094–101.
Google Scholar
Shadyab AH, Macera CA, Shaffer RA, Jain S, Gallo LC, LaMonte MJ, et al. Associations of accelerometer-measured and self-reported sedentary time with leukocyte telomere length in older women. Am J Epidemiol. 2017;185(3):172–84.
PubMed
PubMed Central
Google Scholar
Shuval K, Kohl HW 3rd, Bernstein I, Cheng D, Pettee Gabriel K, Barlow CE, et al. Sedentary behaviour and physical inactivity assessment in primary care: the Rapid Assessment Disuse Index (RADI) study. Br J Sports Med. 2014;48(3):250–5.
Article
PubMed
Google Scholar
Simpson K, Parker B, Capizzi J, Thompson P, Clarkson P, Freedson P, et al. Validity and reliability question 8 of the Paffenbarger Physical Activity Questionnaire among healthy adults. J Phys Act Health. 2015;12(1):116–23.
Article
PubMed
Google Scholar
Stolberg CR, Mundbjerg LH, Bladbjerg EM, Funch-Jensen P, Gram B, Juhl CB. Physical training following gastric bypass: effects on physical activity and quality of life-a randomized controlled trial. Qual Life Res. 2018;27(12):3113–22.
Article
PubMed
Google Scholar
Sudholz B, Ridgers ND, Mussap A, Bennie J, Timperio A, Salmon J. Reliability and validity of self-reported sitting and breaks from sitting in the workplace. J Sci Med Sport. 2018;21(7):697–701.
Article
PubMed
Google Scholar
Sushames AJ, Edwards AM, Mein JK, Sinclair KM, Maguire GP. Utility of field-based techniques to assess Indigenous Australians' functional fitness and sedentary time. Public Health. 2015;129(12):1656–61.
Article
CAS
PubMed
Google Scholar
Sweatt SK, Willig AL, Agne AA, Powell JL, Cherrington AL. Physical activity patterns of Latina immigrants living in Alabama. J Racial Ethnic Health Disparities. 2015;2(3):365–72.
Article
Google Scholar
Terada T, Sexsmith JR. Determination of young adults' sedentary time with a multisensory activity monitor and activity log diary. Tech Health Care. 2015;23(6):835–45.
Article
Google Scholar
Toledo MJ, Hekler E, Hollingshead K, Epstein D, Buman M. Validation of a smartphone app for the assessment of sedentary and active behaviors. JMIR Mhealth Uhealth. 2017;5(8):e119.
Article
PubMed
PubMed Central
Google Scholar
Umstattd Meyer MR, Baller SL, Mitchell SM, Trost SG. Comparison of 3 accelerometer data reduction approaches, step counts, and 2 self-report measures for estimating physical activity in free-living adults. J Phys Act Health. 2013;10(7):1068–74.
Article
PubMed
Google Scholar
Unick JL, Lang W, Tate DF, Bond DS, Espeland MA, Wing RR. Objective estimates of physical activity and sedentary time among young adults. J Obes. 2017;2017:9257564.
Article
PubMed
PubMed Central
Google Scholar
Urda JL, Larouere B, Verba SD, Lynn JS. Comparison of subjective and objective measures of office workers' sedentary time. Prev Med Rep. 2017;8:163–8.
Article
PubMed
PubMed Central
Google Scholar
Van Cauwenberg J, Van Holle V, De Bourdeaudhuij I, Owen N, Deforche B. Older adults' reporting of specific sedentary behaviors: validity and reliability. BMC Public Health. 2014;14:734.
Article
PubMed
PubMed Central
Google Scholar
Van Der Ploeg HP, Merom D, Chau JY, Bittman M, Trost SG, Bauman AE. Advances in population surveillance for physical activity and sedentary behavior: Reliability and validity of time use surveys. Am J Epidemiol. 2010;172(10):1199–206.
Article
PubMed
Google Scholar
Van Dyck D, Cardon G, Deforche B, Owen N, Sallis JF, De Bourdeaudhuij I. Neighborhood walkability and sedentary time in Belgian adults. Am J Prev Med. 2010;39(1):25–32.
Article
PubMed
Google Scholar
Van Dyck D, Cardon G, Deforche B, De Bourdeaudhuij I. IPAQ interview version: convergent validity with accelerometers and comparison of physical activity and sedentary time levels with the self-administered version. J Sports Med Phys Fitness. 2015;55(7-8):776–86.
PubMed
Google Scholar
van Nassau F, Chau JY, Lakerveld J, Bauman AE, van der Ploeg HP. Validity and responsiveness of four measures of occupational sitting and standing. Int J Behav Nutr Phys Act. 2015;12(1):144.
Article
PubMed
PubMed Central
Google Scholar
Vandezande AM. Associations of levels and types of physical activity and sedentary behavior with total and abdominal fat in overweight and obese adults. Ann Arbor: San Diego State University; 2014.
Google Scholar
Vandoni M, Buzzachera C, Ottobrini S, Correale L, Borrelli P, Berzolari F, et al. Perceived and objectively measured physical activity in high school students: is there any link between aerobic fitness, psychological responses and acute exercise? Sport Sci Health. 2017;13(1):157–64.
Article
Google Scholar
Vanroy C, Vanlandewijck Y, Cras P, Feys H, Truijen S, Michielsen M, et al. Is a coded physical activity diary valid for assessing physical activity level and energy expenditure in stroke patients? PLoS One. 2014;9(6):e98735.
Article
PubMed
PubMed Central
CAS
Google Scholar
Veitch W, Climie R, Gabbe B, Dunstan D, Owen N, Ekegren C. Validation of two physical activity and sedentary behaviour questionnaires in orthopaedic trauma patients. J Sci Med Sport. 2018;21(Supplement 1):S85.
Article
Google Scholar
Visser M, Koster A. Development of a questionnaire to assess sedentary time in older persons - a comparative study using accelerometry. BMC Geriatrics. 2013;13(1):80.
Article
PubMed
PubMed Central
Google Scholar
Wanner M, Probst-Hensch N, Kriemler S, Meier F, Autenrieth C, Martin BW. Validation of the long international physical activity questionnaire: Influence of age and language region. Prev Med Rep. 2016;3:250–6.
Article
PubMed
PubMed Central
Google Scholar
Wanner M, Hartmann C, Pestoni G, Martin BW, Siegrist M, Martin-Diener E. Validation of the Global Physical Activity Questionnaire for self-administration in a European context. BMJ Open Sport Exerc Med. 2017;3(1):e000206.
Article
PubMed
PubMed Central
Google Scholar
Waters CN, Er Pei L, Chu AHY, Ng SHX, Chia A, Yee Wei L, et al. Assessing and understanding sedentary behaviour in office-based working adults: a mixed-method approach. BMC Public Health. 2016;16(1):1–11.
Article
Google Scholar
Watson ED, Micklesfield LK, Van Poppel MNM, Norris SA, Sattler MC, Dietz P. Validity and responsiveness of the Global Physical Activity Questionnaire (GPAQ) in assessing physical activity during pregnancy. PLoS One. 2017;12(5):e0177996.
Article
PubMed
PubMed Central
CAS
Google Scholar
Welch WA, Lloyd GR, Awick EA, Siddique J, McAuley E, Phillips SM. Measurement of physical activity and sedentary behavior in breast cancer survivors. J Community Supportive Oncol. 2018;16(1):e21–e9.
Google Scholar
Whitfield GP, Gabriel KKP, Kohl IHW. Assessing sitting across contexts: Development of the multicontext sitting time questionnaire. Res Q Exerc Sport. 2013;84(3):323–8.
Article
PubMed
PubMed Central
Google Scholar
Wick K, Faude O, Schwager S, Zahner L, Donath L. Deviation between self-reported and measured occupational physical activity levels in office employees: effects of age and body composition. Int Arch Occup Environ Health. 2016;89(4):575–82.
Article
PubMed
Google Scholar
Wijndaele K, DEB I, Godino JG, Lynch BM, Griffin SJ, Westgate K, et al. Reliability and validity of a domain-specific last 7-d sedentary time questionnaire. [Erratum appears in Med Sci Sports Exerc. 2014 Sep;46(9):1869]. Med Sci Sports Exerc. 2014;46(6):1248–60.
Article
PubMed
PubMed Central
Google Scholar
Yi S, Bartley K, Firestone M, Eisenhower D. Self-reported sitting time using a two-question method is a good measure of sedentary behavior: Findings in the New York city adult population. Circulation Conference: American Heart Association's Epidemiology and Prevention/Nutrition, Physical Activity, and Metabolism. 2014;129(SUPPL. 1).
Yu CA, Rouse P, Veldhuijzen Van Zanten J, Metsios G, Ntoumanis N, Kitas G, et al. Associations between objective and self-reported physical activity data in rheumatoid arthritis patients. Annals of the Rheumatic Diseases Conference: Annual European Congress of Rheumatology of the European League Against Rheumatism, EULAR. 2014;73(SUPPL. 2).
Google Scholar
Boyle T, Lynch BM, Courneya KS, Vallance JK. Agreement between accelerometer-assessed and self-reported physical activity and sedentary time in colon cancer survivors. Supportive Care Cancer. 2015;23(4):1121–6.
Article
Google Scholar
Hur SA, Guler SA, Khalil N, Camp PG, Guenette JA, Swigris JJ, et al. Minimal important difference for physical activity and validity of the International Physical Activity Questionnaire in interstitial lung disease. Ann Am Thorac Soc. 2019;16(1):107–15.
Article
PubMed
Google Scholar
Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6(4):284–90.
Article
Google Scholar
Saunders TJ, Chaput J-P, Tremblay MS. Sedentary behaviour as an emerging risk factor for cardiometabolic diseases in children and youth. Can J Diabetes. 2014;38(1):53–61.
Article
PubMed
Google Scholar
Colley RC, Butler G, Garriguet D, Prince SA, Roberts KC. Comparison of self-reported and accelerometer-measured physical activity in Canadian adults. Health Rep. 2018;29(12):3–15.
PubMed
Google Scholar
Atkin AJ, Gorely T, Clemes SA, Yates T, Edwardson C, Brage S, et al. Methods of measurement in epidemiology: sedentary behaviour. Int J Epidemiol. 2012;41(5):1460–71.
Article
PubMed
PubMed Central
Google Scholar
Stamatakis E, Davis M, Stathi A, Hamer M. Associations between multiple indicators of objectively-measured and self-reported sedentary behaviour and cardiometabolic risk in older adults. Prev Med. 2012;54(1):82–7.
Article
PubMed
Google Scholar
Ku P-W, Steptoe A, Liao Y, Hsueh M-C, Chen L-J. A cut-off of daily sedentary time and all-cause mortality in adults: a meta-regression analysis involving more than 1 million participants. BMC Med. 2018;16(1):74.
Article
PubMed
PubMed Central
Google Scholar
Chau JY, Grunseit AC, Chey T, Stamatakis E, Brown WJ, Matthews CE, et al. Daily sitting time and all-cause mortality: a meta-analysis. PLoS One. 2013;8(11):e80000.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garcia JM, Duran AT, Schwartz JE, Booth JN 3rd, Hooker SP, Willey JZ, et al. Types of sedentary behavior and risk of cardiovascular events and mortality in Blacks: The Jackson Heart Study. J Am Heart Assoc. 2019;8(13):e010406.
Article
PubMed
PubMed Central
Google Scholar
Cleland VJ, Schmidt MD, Dwyer T, Venn AJ. Television viewing and abdominal obesity in young adults: is the association mediated by food and beverage consumption during viewing time or reduced leisure-time physical activity? Am J Clin Nutr. 2008;87(5):1148–55.
Article
CAS
PubMed
Google Scholar
Lowry R, Wechsler H, Galuska DA, Fulton JE, Kann L. Television viewing and its associations with overweight, sedentary lifestyle, and insufficient consumption of fruits and vegetables among US high school students: differences by race, ethnicity, and gender. J Sch Health. 2002;72(10):413–21.
Article
PubMed
Google Scholar