Ding D, Lawson KD, Kolbe-Alexander TL, Finkelstein EA, Katzmarzyk PT, van Mechelen W, Pratt M, Committee LPASE. The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet. 2016;388(10051):1311–24.
PubMed
Google Scholar
Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–57.
PubMed
Google Scholar
Health Survey for England 2016 physical activity in adults. 2016 [cited 2020 01.07]; Available from: http://healthsurvey.hscic.gov.uk/media/63730/HSE16-Adult-phy-act.pdf.
Bellows-Riecken KH, Rhodes RE. A birth of inactivity? A review of physical activity and parenthood. Prev Med. 2008;46(2):99–110.
PubMed
Google Scholar
Condello G, Puggina A, Aleksovska K, Buck C, Burns C, Cardon G, Carlin A, Simon C, Ciarapica D, Coppinger T. Behavioral determinants of physical activity across the life course: a “DEterminants of DIet and physical ACtivity”(DEDIPAC) umbrella systematic literature review. Int J Behav Nutr Phys Act. 2017;14:58.
PubMed
PubMed Central
Google Scholar
Corder K, Winpenny EM, Foubister C, Guagliano JM, Hartwig XM, Love R, Clifford Astbury C, van Sluijs EMF: Becoming a parent: a systematic review and meta-analysis of changes in BMI, diet and physical activity. 2019.
Griffiths LJ, Cortina-Borja M, Sera F, Pouliou T, Geraci M, Rich C, Cole TJ, Law C, Joshi H, Ness AR. How active are our children? Findings from the millennium cohort study. BMJ Open. 2013;3(8):e002893.
PubMed
PubMed Central
Google Scholar
Brooke HL, Atkin AJ, Corder K, Ekelund U, van Sluijs EM. Changes in time-segment specific physical activity between ages 10 and 14 years: a longitudinal observational study. J Sci Med Sport. 2016;19(1):29–34.
PubMed
PubMed Central
Google Scholar
Corder K, Craggs C, Jones AP, Ekelund U, Griffin SJ, van Sluijs EM. Predictors of change differ for moderate and vigorous intensity physical activity and for weekdays and weekends: a longitudinal analysis. Int J Behav Nutr Phys Act. 2013;10:69.
PubMed
PubMed Central
Google Scholar
Corder K, Sharp S, Atkin AJ, Griffin S, Jones A, Ekelund U, van Sluijs E. Change in objectively measured physical activity during the transition to adolescence. Br J Sports Med. 2013;49(11):730–6.
PubMed
Google Scholar
Kaushal N, Rhodes RE. The home physical environment and its relationship with physical activity and sedentary behavior: a systematic review. Prev Med. 2014;67:221–37.
PubMed
Google Scholar
Maitland C, Stratton G, Foster S, Braham R, Rosenberg M. A place for play? The influence of the home physical environment on children’s physical activity and sedentary behaviour. Int J Behav Nutr Phys Act. 2013;10(1):99.
PubMed
PubMed Central
Google Scholar
O'Connor TM, Jago R, Baranowski T. Engaging parents to increase youth physical activity: a systematic review. Am J Prev Med. 2009;37(2):141–9.
PubMed
Google Scholar
van Sluijs EM, McMinn A. Preventing obesity in primary schoolchildren. BMJ. 2010;340:819.
Google Scholar
Kipping RR, Howe LD, Jago R, Campbell R, Wells S, Chittleborough CR, Mytton J, Noble SM, Peters TJ, Lawlor DA. Effect of intervention aimed at increasing physical activity, reducing sedentary behaviour, and increasing fruit and vegetable consumption in children: active for life year 5 (AFLY5) school based cluster randomised controlled trial. BMJ. 2014;348:348–61.
Google Scholar
van Sluijs EM, Kriemler S, McMinn AM. The effect of community and family interventions on young people's physical activity levels: a review of reviews and updated systematic review. Br J Sports Med. 2011;45(11):914–22.
PubMed
Google Scholar
Rhodes RE, Lim C. Promoting parent and child physical activity together: elicitation of potential intervention targets and preferences. Health Educ Behav. 2018;45(1):112–23.
PubMed
Google Scholar
Shonkoff JP, Fisher PA. Rethinking evidence-based practice and two-generation programs to create the future of early childhood policy. Dev Psychopathol 2013, 25(4 pt2):1635.
Guagliano JM, Brown HE, Coombes E, Hughes C, Jones AP, Morton KL, Wilson EC, van Sluijs EM. The development and feasibility of a randomised family-based physical activity promotion intervention: the families reporting every step to health (FRESH) study. Pilot Feas Stud. 2019;5:21.
Google Scholar
Guagliano JM, Brown HL, Coombes E, Haines ES, Hughes C, Jones AP, Morton KL, van Sluijs EM. Whole family-based physical activity promotion intervention: the families reporting every step to health pilot randomised controlled trial protocol. BMJ Open. 2019;9:e030902.
PubMed
PubMed Central
Google Scholar
Guagliano JM, Brown HE, Coombes E, Hughes C, Jones AP, Morton KL, Wilson EC, van Sluijs EM. The development and feasibility of a randomised family-based physical activity promotion intervention: the families reporting every step to health (FRESH) study. Pilot Feas Stud. 2019;5(1):21.
Google Scholar
Brown HE, Schiff A, van Sluijs EM. Engaging families in physical activity research: a family-based focus group study. BMC Public Health. 2015;15:1178–86.
PubMed
PubMed Central
Google Scholar
Stokols D. Translating social ecological theory into guidelines for community health promotion. Am J Health Promot. 1996;10(4):282–98.
CAS
PubMed
Google Scholar
Christensen P. The health-promoting family: a conceptual framework for future research. Soc Sci Med. 2004;59(2):377–87.
PubMed
Google Scholar
Deci EL, Ryan RM: Intrinsic motivation and self-determination in human behavior. Plenum, New York: Springer Science & Business Media; 1985.
Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357–64.
PubMed
PubMed Central
Google Scholar
Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65.
PubMed
Google Scholar
Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.
PubMed
Google Scholar
British National Grid. Beginners guide to grid references. 2020 [cited 2020 03.06]; Available from: https://getoutside.ordnancesurvey.co.uk/guides/beginners-guide-to-grid-references.
Dunton GF, Liao Y, Almanza E, Jerrett M, Spruijt-Metz D, Pentz MA. Locations of joint physical activity in parent-child pairs based on accelerometer and GPS monitoring. Ann Behav Med. 2013;45(Suppl 1):S162–72.
PubMed
Google Scholar
Collings PJ, Wijndaele K, Corder K, Westgate K, Ridgway CL, Dunn V, Goodyer I, Ekelund U, Brage S. Levels and patterns of objectively-measured physical activity volume and intensity distribution in UK adolescents: the ROOTS study. Int J Behav Nutr Phys Act. 2014;11:23.
PubMed
PubMed Central
Google Scholar
Pan H, Cole TJ: LMSgrowth program version 2.77. In. London, England: Child Growth Foundation; 2012.
Wareham NJ, Jakes RW, Rennie KL, Mitchell J, Hennings S, Day NE. Validity and repeatability of the EPIC-Norfolk physical activity questionnaire. Int J Epidemiol. 2002;31(1):168–74.
PubMed
Google Scholar
Corder K, van Sluijs EM, Wright A, Whincup P, Wareham NJ, Ekelund U. Is it possible to assess free-living physical activity and energy expenditure in young people by self-report? Am J Clin Nutr. 2009;89(3):862–70.
CAS
PubMed
Google Scholar
Lampard AM, Nishi A, Baskin ML, Carson TL, Davison KK. The activity support scale for multiple groups (ACTS-MG): child-reported physical activity parenting in African American and non-Hispanic White families. Behav Med. 2016;42(2):112–9.
PubMed
Google Scholar
van Sluijs EM, Skidmore PM, Mwanza K, Jones AP, Callaghan AM, Ekelund U, Harrison F, Harvey I, Panter J, Wareham NJ. Physical activity and dietary behaviour in a population-based sample of British 10-year old children: the SPEEDY study (sport, physical activity and eating behaviour: environmental determinants in Young people). BMC Public Health. 2008;8(1):388.
PubMed
PubMed Central
Google Scholar
The EuroQol Group. EuroQol - a new facility for the measurement of health-related quality of life. Health Policy. 1990;16(3):199–208.
Google Scholar
Brooks R. The EuroQol group: EuroQol: the current state of play. Health Policy. 1996;37(1):53–72.
CAS
PubMed
Google Scholar
Stevens KJ. Working with children to develop dimensions for a preference-based, generic, pediatric, health-related quality-of-life measure. Qual Health Res. 2010;20(3):340–51.
PubMed
Google Scholar
Stevens KJ. Assessing the performance of a new generic measure of health-related quality of life for children and refining it for use in health state valuation. Appl Health Econ Health Policy. 2011;9(3):157–69.
PubMed
Google Scholar
Corder K, van Sluijs EM, McMinn AM, Ekelund U, Cassidy A, Griffin SJ. Perception versus reality: awareness of physical activity levels of British children. Am J Prev Med. 2010;38(1):1–8.
PubMed
PubMed Central
Google Scholar
Godino JG, Watkinson C, Corder K, Sutton S, Griffin SJ, Van Sluijs EM. Awareness of physical activity in healthy middle-aged adults: a cross-sectional study of associations with sociodemographic, biological, behavioural, and psychological factors. BMC Public Health. 2014;14:421.
PubMed
PubMed Central
Google Scholar
D’Haese S, Gheysen F, De Bourdeaudhuij I, Deforche B, Van Dyck D, Cardon G. The moderating effect of psychosocial factors in the relation between neighborhood walkability and children’s physical activity. Int J Behav Nutr Phys Act. 2016;13(1):128.
PubMed
PubMed Central
Google Scholar
Motl RW, Dishman RK, Trost SG, Saunders RP, Dowda M, Felton G, Ward DS, Pate RR. Factorial validity and invariance of questionnaires measuring social-cognitive determinants of physical activity among adolescent girls. Prev Med. 2000;31(5):584–94.
CAS
PubMed
Google Scholar
Markland D, Tobin V. A modification to the behavioural regulation in exercise questionnaire to include an assessment of amotivation. J Sport Exerc Psychol. 2004;26(2):191–6.
Google Scholar
Sebire SJ, Jago R, Fox KR, Edwards MJ, Thompson JL. Testing a self-determination theory model of children’s physical activity motivation: a cross-sectional study. Int J Behav Nutr Phys Act. 2013;10:111.
PubMed
PubMed Central
Google Scholar
Grotevant HD, Cooper CR. Patterns of interaction in family relationships and the development of identity exploration in adolescence. Child Dev. 1985;56(2):415–28.
CAS
PubMed
Google Scholar
Bengston PL, Grotevant HD. The individuality and connectedness Q-sort: a measure for assessing individuality and connectedness in dyadic relationships. Pers Relat. 1999;6(2):213–25.
Google Scholar
White IR, Thompson SG. Adjusting for partially missing baseline measurements in randomized trials. Stat Med. 2005;24(7):993–1007.
PubMed
Google Scholar
Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW: Methods for the economic evaluation of health care programmes: Oxford university press; 2015.
Manca A, Hawkins N, Sculpher MJ. Estimating mean QALYs in trial-based cost-effectiveness analysis: the importance of controlling for baseline utility. Health Econ. 2005;14(5):487–96.
PubMed
Google Scholar
Côté J, Salmela JH, Baria A, Russell S. Organizing and interpreting unstructured qualitative data. Sport Psychol. 1993;7:127–37.
Google Scholar
Treweek S, Pitkethly M, Cook J, Fraser C, Mitchell E, Sullivan F, Jackson C, Taskila TK, Gardner H. Strategies to improve recruitment to randomised trials. Cochrane Database Syst Rev. 2018;2.
Planner C, Bower P, Donnelly A, Gillies K, Turner K, Young B. Trials need participants but not their feedback? A scoping review of published papers on the measurement of participant experience of taking part in clinical trials. Trials. 2019;20(1):381.
PubMed
PubMed Central
Google Scholar
McDonald AM, Knight RC, Campbell MK, Entwistle VA, Grant AM, Cook JA, Elbourne DR, Francis D, Garcia J, Roberts I. What influences recruitment to randomised controlled trials? A review of trials funded by two UK funding agencies. Trials. 2006;7(1):9.
PubMed
PubMed Central
Google Scholar
Morgan PJ, Jones RA, Collins CE, Hesketh KD, Young MD, Burrows TL, Magarey AM, Brown HL, Hinkley T, Perry RA. Practicalities and research considerations for conducting childhood obesity prevention interventions with families. Children. 2016;3(4):24–40.
PubMed Central
Google Scholar
Norfolk Insight. Data and information about Norfolk's population. 2020 [cited 2020 01.07]; Available from: http://www.norfolkinsight.org.uk/.
Robinson L, Adair P, Coffey M, Harris R, Burnside G. Identifying the participant characteristics that predict recruitment and retention of participants to randomised controlled trials involving children: aAsystematic review. Trials. 2016;17(1):294.
PubMed
PubMed Central
Google Scholar
Cui Z, Seburg EM, Sherwood NE, Faith MS, Ward DS. Recruitment and retention in obesity prevention and treatment trials targeting minority or low-income children: a review of the clinical trials registration database. Trials. 2015;16(1):564.
PubMed
PubMed Central
Google Scholar
Schoeppe S, Oliver M, Badland HM, Burke M, Duncan MJ. Recruitment and retention of children in behavioral health risk factor studies: REACH strategies. Int J Behav Med. 2014;21(5):794–803.
PubMed
Google Scholar
Rhodes RE, Quinlan A. The family as a context for physical activity promotion. In: Group dynamics in exercise and sport psychology. Volume 2, edn. Edited by Beauchamp MR, Eys MA. Routledge; 2014. p. 203–21.
Sarkadi A, Kristiansson R, Oberklaid F, Bremberg S. Fathers' involvement and children's developmental outcomes: a systematic review of longitudinal studies. Acta Paediatr. 2008;97(2):153–8.
PubMed
Google Scholar
Lloyd AB, Lubans DR, Plotnikoff RC, Morgan PJ. Paternal lifestyle-related parenting practices mediate changes in children’s dietary and physical activity behaviors: findings from the healthy dads, healthy kids community randomized controlled trial. J Phys Act Health. 2015;12(9):1327–35.
PubMed
Google Scholar
Lubans DR, Morgan PJ, Collins CE, Okely AD, Burrows T, Callister R. Mediators of weight loss in the Healthy dads, healthy Kids pilot study for overweight fathers. Int J Behav Nutr Phys Act. 2012;9:45–50.
PubMed
PubMed Central
Google Scholar
Zahra J, Sebire SJ, Jago R. “He’s probably more Mr. sport than me” – a qualitative exploration of mothers’ perceptions of fathers’ role in their children’s physical activity. BMC Pediatr. 2015;15:101.
PubMed
PubMed Central
Google Scholar
Rhodes RE, Blanchard CM, Quinlan A, Naylor P-J, Warburton DE. Family physical activity planning and child physical activity outcomes: a randomized trial. Am J Prev Med. 2019;57(2):135–44.
PubMed
Google Scholar
Hardy LL, Okely AD, Dobbins TA, Booth ML. Physical activity among adolescents in New South Wales (Australia): 1997 and 2004. Med Sci Sports Exerc. 2008;40(5):835–41.
PubMed
Google Scholar
Kimm SY, Glynn NW, Kriska AM, Barton BA, Kronsberg SS, Daniels SR, Crawford PB, Sabry ZI, Liu K. Decline in physical activity in black girls and white girls during adolescence. N Engl J Med. 2002;347(10):709–15.
PubMed
Google Scholar
Nader PR, Bradley RH, Houts RM, McRitchie SL, O’Brien M. Moderate-to-vigorous physical activity from ages 9 to 15 years. J Am Med Assoc. 2008;300(3):295–305.
CAS
Google Scholar
Kahn JA, Huang B, Gillman MW, Field AE, Austin SB, Colditz GA, Frazier AL. Patterns and determinants of physical activity in US adolescents. J Adolesc Health. 2008;42(4):369–77.
PubMed
Google Scholar
Sutherland R, Reeves P, Campbell E, Lubans DR, Morgan PJ, Nathan N, Wolfenden L, Okely AD, Gillham K, Davies L, et al. Cost effectiveness of a multi-component school-based physical activity intervention targeting adolescents: the 'Physical activity 4 Everyone' cluster randomized trial. Int J Behav Nutr Phys Act. 2016;13:94.
PubMed
PubMed Central
Google Scholar
Gc VS, Suhrcke M, Atkin AJ, van Sluijs E, Turner D. Cost-effectiveness of physical activity interventions in adolescents: model development and illustration using two exemplar interventions. BMJ Open. 2019;9(8):e027566.
PubMed
PubMed Central
Google Scholar