Guthold R, Stevens GA, Riley LM, Bull FC. Global trends in insufficient physical activity among adolescents: a pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc Health. 2020;4(1):23–35.
Article
PubMed
PubMed Central
Google Scholar
Larouche R, Saunders TJ, Faulkner G, Colley R, Tremblay M. Associations between active school transport and physical activity, body composition, and cardiovascular fitness: a systematic review of 68 studies. J Phys Act Health. 2014;11(1):206–27.
Article
PubMed
Google Scholar
Kallio J, Turpeinen S, Hakonen H, Tammelin T. Active commuting to school in Finland, the potential for physical activity increase in different seasons. Int J Circumpolar Health. 2016;75:33319.
Article
PubMed
Google Scholar
Lubans DR, Boreham CA, Kelly P, Foster CE. The relationship between active travel to school and health-related fitness in children and adolescents: a systematic review. Int J Behav Nutr Phys Act. 2011;8:5.
Article
PubMed
PubMed Central
Google Scholar
Ruiz-Ariza A, de la Torre-Cruz MJ, Redecillas-Peiró MT, Martínez-López EJ. Influence of active commuting on happiness, well-being, psychological distress and body shape in adolescents. Gac Sanit. 2015;29(6):454–7.
Article
PubMed
Google Scholar
Buliung RN, Mitra R, Faulkner G. Active school transportation in the greater Toronto area, Canada: an exploration of trends in space and time (1986-2006). Prev Med. 2009;48(6):507–12.
Article
PubMed
Google Scholar
Chillon P, Martinez-Gomez D, Ortega FB, Perez-Lopez IJ, Diaz LE, Veses AM, et al. Six-year trend in active commuting to school in Spanish adolescents. The AVENA and AFINOS studies. Int J Behav Med. 2013;20(4):529–37.
Article
PubMed
Google Scholar
Dygryn J, Mitas J, Gaba A, Rubin L, Fromel K. Changes in active commuting to School in Czech Adolescents in different types of built environment across a 10-year period. Int J Environ Res Public Health. 2015;12(10):12988–98.
Article
PubMed
PubMed Central
Google Scholar
Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. An ecological approach to creating active living communities. Annu Rev Public Health. 2006;27:297–322.
Article
PubMed
Google Scholar
D'Haese S, Vanwolleghem G, Hinckson E, De Bourdeaudhuij I, Deforche B, Van Dyck D, et al. Cross-continental comparison of the association between the physical environment and active transportation in children: a systematic review. Int J Behav Nutr Phys Act. 2015;12:145.
Article
PubMed
PubMed Central
Google Scholar
Condello G, Puggina A, Aleksovska K, Buck C, Burns C, Cardon G, et al. Behavioral determinants of physical activity across the life course: a "DEterminants of DIet and physical ACtivity" (DEDIPAC) umbrella systematic literature review. Int J Behav Nutr Phys Act. 2017;14(1):58.
Article
PubMed
PubMed Central
Google Scholar
Frank LD, Sallis JF, Saelens BE, Leary L, Cain K, Conway TL, et al. The development of a walkability index: application to the neighborhood quality of life study. Br J Sports Med. 2010;44(13):924–33.
Article
CAS
PubMed
Google Scholar
Wong BY, Faulkner G, Buliung R. GIS measured environmental correlates of active school transport: a systematic review of 14 studies. Int J Behav Nutr Phys Act. 2011;8:39.
Article
PubMed
PubMed Central
Google Scholar
Ding D, Sallis JF, Kerr J, Lee S, Rosenberg DE. Neighborhood environment and physical activity among youth: a review. Am J Prev Med. 2011;41(4):442–55.
Article
PubMed
Google Scholar
Giles-Corti B, Wood G, Pikora T, Learnihan V, Bulsara M, Van Niel K, et al. School site and the potential to walk to school: the impact of street connectivity and traffic exposure in school neighborhoods. Health Place. 2011;17(2):545–50.
Article
PubMed
Google Scholar
Trapp GS, Giles-Corti B, Christian HE, Bulsara M, Timperio AF, McCormack GR, et al. On your bike! A cross-sectional study of the individual, social and environmental correlates of cycling to school. Int J Behav Nutr Phys Act. 2011;8:123.
Article
PubMed
PubMed Central
Google Scholar
Molina-Garcia J, Queralt A. Neighborhood built environment and socioeconomic status in relation to active commuting to School in Children. J Phys Act Health. 2017;14(10):761–5.
Article
PubMed
Google Scholar
Cain KL, Geremia CM, Conway TL, Frank LD, Chapman JE, Fox EH, et al. Development and reliability of a streetscape observation instrument for international use: MAPS-global. Int J Behav Nutr Phys Act. 2018;15(1):19.
Article
PubMed
PubMed Central
Google Scholar
Molina-Garcia J, Garcia-Masso X, Estevan I, Queralt A. Built environment, psychosocial factors and active commuting to School in Adolescents: clustering a self-organizing map analysis. Int J Environ Res Public Health. 2019;16(1):83.
Article
Google Scholar
van Loon J, Frank LD, Nettlefold L, Naylor PJ. Youth physical activity and the neighbourhood environment: examining correlates and the role of neighbourhood definition. Soc Sci Med. 2014;104:107–15.
Article
PubMed
Google Scholar
Forsyth A, Oakes JM, Schmitz KH, Hearst M. Does residential density increase walking and other physical activity? Urban Stud. 2007;44(4):679–97.
Article
Google Scholar
Chaudhury H, Mahmood A, Michael YL, Campo M, Hay K. The influence of neighborhood residential density, physical and social environments on older adults' physical activity: an exploratory study in two metropolitan areas. J Aging Stud. 2012;26(1):35–43.
Article
Google Scholar
Sallis JF, Cain KL, Conway TL, Gavand KA, Millstein RA, Geremia CM, et al. Is your neighborhood designed to support physical activity? A Brief Streetscape Audit Tool. Prev Chronic Dis. 2015;12:E141.
Article
PubMed
PubMed Central
Google Scholar
Cain KL, Millstein RA, Sallis JF, Conway TL, Gavand KA, Frank LD, et al. Contribution of streetscape audits to explanation of physical activity in four age groups based on the microscale audit of pedestrian streetscapes (MAPS). Soc Sci Med. 2014;116:82–92.
Article
PubMed
PubMed Central
Google Scholar
Pocock T, Moore A, Keall M, Mandic S. Physical and spatial assessment of school neighbourhood built environments for active transport to school in adolescents from Dunedin (New Zealand). Health Place. 2019;55:1–8.
Article
PubMed
Google Scholar
Wang X, Conway TL, Cain KL, Frank LD, Saelens BE, Geremia C, et al. Interactions of psychosocial factors with built environments in explaining adolescents' active transportation. Prev Med. 2017;100:76–83.
Article
PubMed
PubMed Central
Google Scholar
Molina-Garcia J, Queralt A, Adams MA, Conway TL, Sallis JF. Neighborhood built environment and socio-economic status in relation to multiple health outcomes in adolescents. Prev Med. 2017;105:88–94.
Article
PubMed
Google Scholar
Chillon P, Ortega FB, Ferrando JA, Casajus JA. Physical fitness in rural and urban children and adolescents from Spain. J Sci Med Sport. 2011;14(5):417–23.
Article
PubMed
Google Scholar
Gropp KM, Pickett W, Janssen I. Multi-level examination of correlates of active transportation to school among youth living within 1 mile of their school. Int J Behav Nutr Phys Act. 2012;9:124.
Article
PubMed
PubMed Central
Google Scholar
Rodriguez-Lopez C, Salas-Farina ZM, Villa-Gonzalez E, Borges-Cosic M, Herrador-Colmenero M, Medina-Casaubon J, et al. The threshold distance associated with walking from home to school. Health Educ Behav. 2017;44(6):857–66.
Article
PubMed
Google Scholar
Chillón P, Molina-García J, Castillo I, Queralt A. What distance do university students walk and bike daily to class in Spain. J Transp Health. 2016;3(3):315–20.
Article
Google Scholar
Chillon P, Herrador-Colmenero M, Migueles JH, Cabanas-Sanchez V, Fernandez-Santos JR, Veiga OL, et al. Convergent validation of a questionnaire to assess the mode and frequency of commuting to and from school. Scand J Public Health. 2017;45(6):612–20.
Article
PubMed
Google Scholar
Frank LD, Schmid TL, Sallis JF, Chapman J, Saelens BE. Linking objectively measured physical activity with objectively measured urban form: findings from SMARTRAQ. Am J Prev Med. 2005;28(2 Suppl 2):117–25.
Article
PubMed
Google Scholar
McMillan TE, Cubbin C, Parmenter B, Medina AV, Lee RE. Neighborhood sampling: how many streets must an auditor walk? Int J Behav Nutr Phys Act. 2010;7:20.
Article
PubMed
PubMed Central
Google Scholar
Millstein RA, Cain KL, Sallis JF, Conway TL, Geremia C, Frank LD, et al. Development, scoring, and reliability of the microscale audit of pedestrian streetscapes (MAPS). BMC Public Health. 2013;13:403.
Article
PubMed
PubMed Central
Google Scholar
Al Shalabi L, Shaaban Z, Kasasbeh B. Data mining: a preprocessing engine. J Comput Sci. 2006;2(9):735–9.
Article
Google Scholar
Grasser G, van Dyck D, Titze S, Stronegger WJ. A European perspective on GIS-based walkability and active modes of transport. Eur J Pub Health. 2017;27(1):145–51.
Google Scholar
Garcia-Masso X, Serra-Ano P, Garcia-Raffi LM, Sanchez-Perez EA, Lopez-Pascual J, Gonzalez LM. Validation of the use of Actigraph GT3X accelerometers to estimate energy expenditure in full time manual wheelchair users with spinal cord injury. Spinal Cord. 2013;51(12):898–903.
Article
CAS
PubMed
Google Scholar
Ikeda E, Stewart T, Garrett N, Egli V, Mandic S, Hosking J, et al. Built environment associates of active school travel in New Zealand children and youth: a systematic meta-analysis using individual participant data. J Transp Health. 2018;9:117–31.
Article
Google Scholar
Campos-Sánchez FS, Abarca-Álvarez FJ, Reinoso-Bellido R. Assessment of open spaces in inland medium-sized cities of eastern Andalusia (Spain) through complementary approaches: spatial-configurational analysis and decision support. Eur Plan Stud. 2019;27(7):1270–90.
Article
Google Scholar
Dalton MA, Longacre MR, Drake KM, Gibson L, Adachi-Mejia AM, Swain K, et al. Built environment predictors of active travel to school among rural adolescents. Am J Prev Med. 2011;40(3):312–9.
Article
PubMed
PubMed Central
Google Scholar
McCrorie P, Mitchell R, Macdonald L, Jones A, Coombes E, Schipperijn J, et al. The relationship between living in urban and rural areas of Scotland and children’s physical activity and sedentary levels: a country-wide cross-sectional analysis. BMC Public Health. 2020;20(1):1–11.
Article
Google Scholar
Kontou E, McDonald NC, Brookshire K, Pullen-Seufert NC, LaJeunesse S. US active school travel in 2017: prevalence and correlates. Prev Med Rep. 2020;17:101024.
Article
PubMed
Google Scholar
Verhoeven H, Simons D, Van Dyck D, Van Cauwenberg J, Clarys P, De Bourdeaudhuij I, et al. Psychosocial and environmental correlates of walking, cycling, public transport and passive transport to various destinations in Flemish older adolescents. PLoS One. 2016;11(1):e0147128.
Article
PubMed
PubMed Central
CAS
Google Scholar
Queralt A, Molina-Garcia J. Physical activity and active commuting in relation to objectively measured built-environment attributes among adolescents. J Phys Act Health. 2019;16(5):371–4.
Article
PubMed
Google Scholar
Rothman L, Macpherson AK, Ross T, Buliung RN. The decline in active school transportation (AST): a systematic review of the factors related to AST and changes in school transport over time in North America. Prev Med. 2018;111:314–22.
Article
PubMed
Google Scholar
Ikeda E, Hinckson E, Witten K, Smith M. Assessment of direct and indirect associations between children active school travel and environmental, household and child factors using structural equation modelling. Int J Behav Nutr Phys Act. 2019;16(1):32.
Article
PubMed
PubMed Central
Google Scholar