Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743.
Article
PubMed
Google Scholar
Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care. 2007;30(3):753–9.
Article
CAS
PubMed
Google Scholar
Rowley WR, Bezold C, Arikan Y, Byrne E, Krohe S. Diabetes 2030: insights from yesterday, today, and future trends. Popul Health Manag. 2017;20(1):6–12.
Article
PubMed
PubMed Central
Google Scholar
Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–79.
Article
PubMed
PubMed Central
Google Scholar
Smith AD, Crippa A, Woodcock J, Brage S. Physical activity and incident type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of prospective cohort studies. Diabetologia. 2016;59(12):2527–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aune D, Norat T, Leitzmann M, Tonstad S, Vatten LJ. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol. 2015;30(7):529–42.
Article
PubMed
Google Scholar
Chen GC, Qi Q, Hua S, Moon JY, Spartano NL, Vasan RS, et al. Accelerometer-assessed physical activity and incident diabetes in a population covering the adult life span: the Hispanic Community Health Study/Study of Latinos. Am J Clin Nutr. 2020;112(5):1318–27.
Article
PubMed
PubMed Central
Google Scholar
Sternfeld B, Gabriel KP, Jiang SF, Whitaker KM, Jacobs DR Jr, Quesenberry CP Jr, et al. Risk estimates for diabetes and hypertension with different physical activity methods. Med Sci Sports Exerc. 2019;51(12):2498–505.
Article
PubMed
PubMed Central
Google Scholar
Kraus WE, Janz KF, Powell KE, Campbell WW, Jakicic JM, Troiano RP, et al. Daily step counts for measuring physical activity exposure and its relation to health. Med Sci Sports Exerc. 2019;51(6):1206–12.
Article
PubMed
PubMed Central
Google Scholar
2018 Physical Activity Guidelines Advisory Committee scientific report. 2018 physical activity guidelines advisory committee; 2018.Available from: https://health.gov/paguidelines/second-edition/report.aspx.
Google Scholar
Paluch AE, Bajpai S, Bassett DR, Carnethon MR, Ekelund U, Evenson KR, et al. Daily steps and all-cause mortality: a meta-analysis of 15 international cohorts. Lancet Public Health. 2022;7(3):e219–e28.
Article
PubMed
Google Scholar
Paluch AE, Gabriel KP, Fulton JE, Lewis CE, Schreiner PJ, Sternfeld B, et al. Steps per day and all-cause mortality in middle-aged adults in the coronary artery risk development in young adults study. JAMA Netw Open. 2021;4(9):e2124516.
Article
PubMed
PubMed Central
Google Scholar
Lee IM, Shiroma EJ, Kamada M, Bassett DR, Matthews CE, Buring JE. Association of step volume and intensity with all-cause mortality in older women. JAMA Intern Med. 2019;179(8):1105–12.
Article
PubMed
PubMed Central
Google Scholar
Saint-Maurice PF, Troiano RP, Bassett DR Jr, Graubard BI, Carlson SA, Shiroma EJ, et al. Association of daily step count and step intensity with mortality among US adults. JAMA. 2020;323(12):1151–60.
Article
PubMed
PubMed Central
Google Scholar
Tudor-Locke C, Han H, Aguiar EJ, Barreira TV, Schuna JM Jr, Kang M, et al. How fast is fast enough? Walking cadence (steps/min) as a practical estimate of intensity in adults: a narrative review. Br J Sports Med. 2018;52(12):776–88.
Article
PubMed
Google Scholar
Kraus WE, Yates T, Tuomilehto J, Sun JL, Thomas L, McMurray JJV, et al. Relationship between baseline physical activity assessed by pedometer count and new-onset diabetes in the NAVIGATOR trial. BMJ Open Diabetes Res Care. 2018;6(1):e000523.
Article
PubMed
PubMed Central
Google Scholar
Ponsonby AL, Sun C, Ukoumunne OC, Pezic A, Venn A, Shaw JE, et al. Objectively measured physical activity and the subsequent risk of incident dysglycemia: the Australian diabetes, obesity and lifestyle study (AusDiab). Diabetes Care. 2011;34(7):1497–502.
Article
PubMed
PubMed Central
Google Scholar
Ballin M, Nordström P, Niklasson J, Alamäki A, Condell J, Tedesco S, et al. Daily step count and incident diabetes in community-dwelling 70-year-olds: a prospective cohort study. BMC Public Health. 2020;20(1):1830.
Article
PubMed
PubMed Central
Google Scholar
Garduno AC, LaCroix AZ, LaMonte MJ, Dunstan DW, Evenson KR, Wang G, et al. Associations of daily steps and step intensity with incident diabetes in a prospective cohort study of older women: the OPACH study. Diabetes Care. 2022;45(2):339–47.
Article
PubMed
Google Scholar
Kirkman MS, Briscoe VJ, Clark N, Florez H, Haas LB, Halter JB, et al. Diabetes in older adults. Diabetes Care. 2012;35(12):2650–64.
Article
PubMed
PubMed Central
Google Scholar
Schneiderman N, Llabre M, Cowie CC, Barnhart J, Carnethon M, Gallo LC, et al. Prevalence of diabetes among Hispanics/Latinos from diverse backgrounds: the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Diabetes Care. 2014;37(8):2233–9.
Article
PubMed
PubMed Central
Google Scholar
Arredondo EM, Sotres-Alvarez D, Stoutenberg M, Davis SM, Crespo NC, Carnethon MR, et al. Physical activity levels in U.S. Latino/Hispanic adults: results from the Hispanic Community Health Study/Study of Latinos. Am J Prev Med. 2016;50(4):500–8.
Article
PubMed
Google Scholar
Echeverría SE, Divney A, Rodriguez F, Sterling M, Vasquez E, Murillo R, et al. Nativity and occupational determinants of physical activity participation among Latinos. Am J Prev Med. 2019;56(1):84–92.
Article
PubMed
Google Scholar
Hu G, Qiao Q, Silventoinen K, Eriksson JG, Jousilahti P, Lindström J, et al. Occupational, commuting, and leisure-time physical activity in relation to risk for type 2 diabetes in middle-aged Finnish men and women. Diabetologia. 2003;46(3):322–9.
Article
CAS
PubMed
Google Scholar
Honda T, Kuwahara K, Nakagawa T, Yamamoto S, Hayashi T, Mizoue T. Leisure-time, occupational, and commuting physical activity and risk of type 2 diabetes in Japanese workers: a cohort study. BMC Public Health. 2015;15:1004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medina C, Janssen I, Barquera S, Bautista-Arredondo S, González ME, González C. Occupational and leisure time physical inactivity and the risk of type II diabetes and hypertension among Mexican adults: a prospective cohort study. Sci Rep. 2018;8(1):5399.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sorlie PD, Aviles-Santa LM, Wassertheil-Smoller S, Kaplan RC, Daviglus ML, Giachello AL, et al. Design and implementation of the Hispanic Community Health Study/Study of Latinos. Ann Epidemiol. 2010;20(8):629–41.
Article
PubMed
PubMed Central
Google Scholar
Lavange LM, Kalsbeek WD, Sorlie PD, Aviles-Santa LM, Kaplan RC, Barnhart J, et al. Sample design and cohort selection in the Hispanic Community Health Study/Study of Latinos. Ann Epidemiol. 2010;20(8):642–9.
Article
PubMed
PubMed Central
Google Scholar
Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357–64.
Article
PubMed
PubMed Central
Google Scholar
Tudor-Locke C, Camhi SM, Troiano RP. A catalog of rules, variables, and definitions applied to accelerometer data in the National Health and Nutrition Examination survey, 2003-2006. Prev Chronic Dis. 2012;9:E113.
PubMed
PubMed Central
Google Scholar
Evenson KR, Sotres-Alvarez D, Deng YU, Marshall SJ, Isasi CR, Esliger DW, et al. Accelerometer adherence and performance in a cohort study of US Hispanic adults. Med Sci Sports Exerc. 2015;47(4):725–34.
Article
PubMed
PubMed Central
Google Scholar
Esliger DW, Probert A, Connor Gorber S, Bryan S, Laviolette M, Tremblay MS. Validity of the Actical accelerometer step-count function. Med Sci Sports Exerc. 2007;39(7):1200–4.
Article
PubMed
Google Scholar
Johnson M, Meltz K, Hart K, Schmudlach M, Clarkson L, Borman K. Validity of the Actical activity monitor for assessing steps and energy expenditure during walking. J Sports Sci. 2015;33(8):769–76.
Article
PubMed
Google Scholar
Feito Y, Bassett DR, Thompson DL. Evaluation of activity monitors in controlled and free-living environments. Med Sci Sports Exerc. 2012;44(4):733–41.
Article
PubMed
Google Scholar
Mâsse LC, Fuemmeler BF, Anderson CB, Matthews CE, Trost SG, Catellier DJ, et al. Accelerometer data reduction: a comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc. 2005;37(11 Suppl):S544–54.
Article
PubMed
Google Scholar
Evenson KR, Wen F, Herring AH. Associations of accelerometry-assessed and self-reported physical activity and sedentary behavior with all-cause and cardiovascular mortality among US adults. Am J Epidemiol. 2016;184(9):621–32.
Article
PubMed
PubMed Central
Google Scholar
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36(Suppl 1):S67–74.
Seaman SR, White IR. Review of inverse probability weighting for dealing with missing data. Stat Methods Med Res. 2013;22(3):278–95.
Article
PubMed
Google Scholar
Desquilbet L, Mariotti F. Dose-response analyses using restricted cubic spline functions in public health research. Stat Med. 2010;29(9):1037–57.
PubMed
Google Scholar
Tudor-Locke C, Craig CL, Thyfault JP, Spence JC. A step-defined sedentary lifestyle index: <5000 steps/day. Appl Physiol Nutr Metab. 2013;38(2):100–14.
Article
PubMed
Google Scholar
Vittinghoff EGD, Shiboski SC, McCulloch CE. Regression methods in biostastics: linear, logistic, survival, and repeated measures models. New York: Springer; 2005.
Corraini P, Olsen M, Pedersen L, Dekkers OM, Vandenbroucke JP. Effect modification, interaction and mediation: An overview of theoretical insights for clinical investigators. Clin Epidemiol. 2017;9:331–8.
Article
PubMed
PubMed Central
Google Scholar
Rothman KJGS, Lash TL. Modern Epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008.
Google Scholar
Röckl KS, Witczak CA, Goodyear LJ. Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life. 2008;60(3):145–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holloszy JO. Exercise-induced increase in muscle insulin sensitivity. J Appl Physiol (1985). 2005;99(1):338–43.
Article
CAS
Google Scholar
Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537–44.
Article
CAS
PubMed
Google Scholar
Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.
Article
CAS
PubMed
Google Scholar
Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.
Article
CAS
PubMed
Google Scholar
Lindström J, Peltonen M, Eriksson JG, Aunola S, Hämäläinen H, Ilanne-Parikka P, et al. Determinants for the effectiveness of lifestyle intervention in the Finnish diabetes prevention study. Diabetes Care. 2008;31(5):857–62.
Article
CAS
PubMed
Google Scholar
Daviglus ML, Talavera GA, Aviles-Santa ML, Allison M, Cai J, Criqui MH, et al. Prevalence of major cardiovascular risk factors and cardiovascular diseases among Hispanic/Latino individuals of diverse backgrounds in the United States. JAMA. 2012;308(17):1775–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tudor-Locke C, Schuna JM Jr, Han HO, Aguiar EJ, Green MA, Busa MA, et al. Step-based physical activity metrics and cardiometabolic risk: NHANES 2005-2006. Med Sci Sports Exerc. 2017;49(2):283–91.
Article
PubMed
PubMed Central
Google Scholar
Adams B, Fidler K, Demoes N, Aguiar EJ, Ducharme SW, McCullough AK, et al. Cardiometabolic thresholds for peak 30-min cadence and steps/day. PLoS One. 2019;14(8):e0219933.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jefferis BJ, Parsons TJ, Sartini C, Ash S, Lennon LT, Papacosta O, et al. Objectively measured physical activity, sedentary behaviour and all-cause mortality in older men: does volume of activity matter more than pattern of accumulation? Br J Sports Med. 2018;53(16):1013–20.
Article
PubMed
Google Scholar
Jefferis BJ, Parsons TJ, Sartini C, Ash S, Lennon LT, Papacosta O, et al. Does total volume of physical activity matter more than pattern for onset of CVD? A prospective cohort study of older British men. Int J Cardiol. 2019;278:267–72.
Article
PubMed
PubMed Central
Google Scholar
Strain T, Wijndaele K, Dempsey PC, Sharp SJ, Pearce M, Jeon J, et al. Wearable-device-measured physical activity and future health risk. Nat Med. 2020;26(9):1385–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
About one-in-five Americans use a smart watch or fitness tracker: Pew Research; 2020. Available from: https://www.pewresearch.org/fact-tank/2020/01/09/about-one-in-five-americans-use-a-smart-watch-or-fitness-tracker/. Accessed 24 June 2020.
King AC, Whitt-Glover MC, Marquez DX, Buman MP, Napolitano MA, Jakicic J, et al. Physical activity promotion: highlights from the 2018 physical activity guidelines advisory committee systematic review. Med Sci Sports Exerc. 2019;51(6):1340–53.
Article
PubMed
Google Scholar
Chaudhry UAR, Wahlich C, Fortescue R, Cook DG, Knightly R, Harris T. The effects of step-count monitoring interventions on physical activity: systematic review and meta-analysis of community-based randomised controlled trials in adults. Int J Behav Nutr Phys Act. 2020;17(1):129.
Article
PubMed
PubMed Central
Google Scholar
Park J. Why is 10,000 steps a day the goal? Fitbit’s CEO has some answers. Fortune. 2020. https://fortune.com/2020/06/30/why-10000-steps-per-day-goal-fitbit-ceo/#:~:text=The%2010%2C000%2Dstep%20goal%20satisfies,to%20start%20for%20most%20peopleAccessed 10 Mar 2022.
Google Scholar
Tudor-Locke C, Craig CL, Brown WJ, Clemes SA, De Cocker K, Giles-Corti B, et al. How many steps/day are enough? For adults. Int J Behav Nutr Phys Act. 2011;8:79.
Article
PubMed
PubMed Central
Google Scholar
Hall KS, Hyde ET, Bassett DR, Carlson SA, Carnethon MR, Ekelund U, et al. Systematic review of the prospective association of daily step counts with risk of mortality, cardiovascular disease, and dysglycemia. Int J Behav Nutr Phys Act. 2020;17(1):78.
Article
PubMed
PubMed Central
Google Scholar
ACS demographic and housing estimates: Census Bureau; 2018 .Available from: https://data.census.gov/cedsci/all?q=Hispanic%20or%20Latino&hidePreview=false&t=Hispanic%20or%20Latino&tid=ACSDP1Y2018.DP05. Accessed 24 June 2020.
Hispanic population to reach 111 million by 2060: Census Bureau; 2018. Available from: https://www.census.gov/library/visualizations/2018/comm/hispanic-projected-pop.html. Accessed 24 June 2020.
Keadle SK, Shiroma EJ, Kamada M, Matthews CE, Harris TB, Lee IM. Reproducibility of accelerometer-assessed physical activity and sedentary time. Am J Prev Med. 2017;52(4):541–8.
Article
PubMed
PubMed Central
Google Scholar