Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJF, Martin BW. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012;380(9838):258–71.
Article
PubMed
Google Scholar
Baranowski T. Families and health actions. In: Gochman D, editor. Handbook of behavior research I personal and social determinants. New York and London: Plenum Press; 1997. p. 179–200.
Google Scholar
Bønnelycke J, Sandholdt CT, Jespersen AP. Household collectives: resituating health promotion and physical activity. Sociol Health Illn. 2019;41(3):533–48.
Article
PubMed
Google Scholar
Cleland V, Timperio A, Salmon J, Hume C, Telford A, Crawford D. A longitudinal study of the family physical activity environment and physical activity among youth. Am J Health Promot. 2011;25(3):159–67.
Article
PubMed
Google Scholar
Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7(1):40.
Article
PubMed
PubMed Central
Google Scholar
Reiner M, Niermann C, Jekauc D, Woll A. Long-term health benefits of physical activity – a systematic review of longitudinal studies. BMC Public Health. 2013;13(1):813.
Article
PubMed
PubMed Central
Google Scholar
Pettee KK, Storti KL, Ainsworth BE, Kriska AM. Measurement of physical activity and inactivity in epidemiologic studies. In: Lee I-M BS, Manson J, Paffenbarger RS, editors. Edidemiologic methods in physical activity studies. New York: Oxford University Press, Inc.; 2009. p. 15–33.
Google Scholar
Telama R. Tracking of physical activity from childhood to adulthood: a review. Obes Facts. 2009;2(3):187–95.
Article
PubMed
PubMed Central
Google Scholar
Trost GS, Loprinzi PD. Parental influences on physical activity behavior in children and adolescents: a brief review. Am J Lifestyle Med. 2011;5(2):171–81.
Article
Google Scholar
Määttä S, Ray C, Vepsäläinen H, Lehto E, Kaukonen R, Ylönen A, et al. Parental education and pre-school children’s objectively measured sedentary time: the role of co-participation in physical activity. Int J Environ Res Public Health. 2018;15(2):366.
Article
PubMed Central
Google Scholar
Seabra AF, Mendonça DM, Göring HHH, Thomis MA, Maia JA. Genetic and environmental factors in familial clustering in physical activity. Eur J Epidemiol. 2008;23(3):205–11.
Article
PubMed
Google Scholar
Petersen TL, Møller LB, Brønd JC, Jepsen R, Grøntved A. Association between parent and child physical activity: a systematic review. Int J Behav Nutr Phys Act. 2020;17:67. https://doi.org/10.1186/s12966-020-00966-z.
Article
PubMed
PubMed Central
Google Scholar
Taylor RW, Williams SM, Farmer VL, Taylor BJ. Changes in physical activity over time in young children: a longitudinal study using accelerometers. PLoS One. 2013;8(11):e81567.
Article
PubMed
PubMed Central
Google Scholar
Gustafson SL, Rhodes RE. Parental correlates of physical activity in children and early adolescents. Sports Med (Auckland, NZ). 2006;36(1):79–97.
Article
Google Scholar
Jepsen R, Egholm CL, Brodersen J, Simonsen E, Grarup J, Cyron A, Ellervik C, Rasmussen K. Lolland-Falster Health Study: study protocol for a household-based prospective cohort study. Scand J Public Health. 2018. https://doi.org/10.1177/1403494818799613.
Jago R, Fox KR, Page AS, Brockman R, Thompson JL. Parent and child physical activity and sedentary time: do active parents foster active children? BMC Public Health. 2010;10:194.
Article
PubMed
PubMed Central
Google Scholar
Egholm CL, Packness A, Stokholm J, Rasmussen K, Ellervik C, Simonsen E, Christensen AI, Jepsen R. Questionnaire development for the Lolland-Falster Health Study, Denmark: an iterative and incremental process. BMC Med Res Methodol. 2020;20(1):52.
Article
PubMed
PubMed Central
Google Scholar
Axivity Ltd. AX3 User Manual 2020, January 9. Available from: https://axivity.com/userguides/ax3/settings/. Assessed 14 Feb 2020.
Rasmussen MGB, Pedersen J, Olesen LG, Brage S, Klakk H, Kristensen PL, Brønd JC, Grøntved A. Short-term efficacy of reducing screen media use on physical activity, sleep, and physiological stress in families with children aged 4–14: study protocol for the SCREENS randomized controlled trial. BMC Public Health. 2020;20(1):380.
Article
PubMed
PubMed Central
Google Scholar
Brønd JC, Andersen LB, Arvidsson D. Generating ActiGraph counts from raw acceleration recorded by an alternative monitor. Med Sci Sports Exerc. 2017;49(11):2351–60.
Article
PubMed
Google Scholar
Staudenmayer J, Zhu W, Catellier DJ. Statistical considerations in the analysis of accelerometry-based activity monitor data. Med Sci Sports Exerc. 2012;44(1S):S61–S7.
Article
PubMed
Google Scholar
Brønd JC, Aadland E, Andersen LB, Resaland GK, Andersen SA, Arvidsson D. The ActiGraph counts processing and the assessment of vigorous activity. Clin Physiol Funct Imaging. 2019;39(4):276–83.
Article
PubMed
Google Scholar
Aadland E, Kvalheim OM, Anderssen SA, Resaland GK, Andersen LB. The Triaxial physical activity signature associated with metabolic health in children. Med Sci Sports Exerc. 2019;51(10):2173–9.
Article
PubMed
Google Scholar
Crouter SE, Bassett DR Jr. A new 2-regression model for the Actical accelerometer. Br J Sports Med. 2008;42(3):217–24.
Article
CAS
PubMed
Google Scholar
Crouter SE, Horton M, Bassett DR Jr. Use of a two-regression model for estimating energy expenditure in children. Med Sci Sports Exerc. 2012;44(6):1177–85.
Article
PubMed
PubMed Central
Google Scholar
Crouter SE, Kuffel E, Haas JD, Frongillo EA, Bassett DR Jr. Refined two-regression model for the ActiGraph accelerometer. Med Sci Sports Exerc. 2010;42(5):1029–37.
Article
PubMed
PubMed Central
Google Scholar
Aadland E, Ylvisåker E. Reliability of objectively measured sedentary time and physical activity in adults. PLoS One. 2015;10(7):e0133296.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aadland E, Andersen LB, Skrede T, Ekelund U, Anderssen SA, Resaland GK. Reproducibility of objectively measured physical activity and sedentary time over two seasons in children; comparing a day-by-day and a week-by-week approach. PLoS One. 2017;12(12):e0189304.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aadland E, Johannessen K. Agreement of objectively measured physical activity and sedentary time in preschool children. Prev Med Rep. 2015;2:635–9.
Article
PubMed
PubMed Central
Google Scholar
Arvidsson D, Fridolfsson J, Borjesson M, Andersen LB, Ekblom O, Dencker M, Brønd JC. Re-examination of accelerometer data processing and calibration for the assessment of physical activity intensity. Scand J Med Sci Sports. 2019;29(10):1442–52.
Article
PubMed
Google Scholar
Ludlow LW, Weyand PG. Energy expenditure during level human walking: seeking a simple and accurate predictive solution. J Appl Physiol. 2016;120(5):481–94.
Article
CAS
PubMed
Google Scholar
Skotte J, Korshøj M, Kristiansen J, Hanisch C, Holtermann A. Detection of physical activity types using triaxial accelerometers. J Phys Act Health. 2014;11(1):76–84.
Article
PubMed
Google Scholar
Brønd JC, Grøntved A, Andersen LB, Arvidsson D, Olesen LG. Simple method for the objective activity type assessment with preschoolers, children and adolescents. Children. 2020;7:72.
Article
PubMed Central
Google Scholar
Lohr SL. Sampling: design and analysis. In: Julet M, editor. Sampling: design and analysis. Boca Raton: CRC Press; 2010 p. 165–218.
Adamo KB, Langlois KA, Brett KE, Colley RC. Young children and parental physical activity levels: findings from the Canadian health measures survey. Am J Prev Med. 2012;43(2):168–75.
Farooq A, Martin A, Janssen X, Wilson MG, Gibson A-M, Hughes A, et al. Longitudinal changes in moderate-to-vigorous-intensity physical activity in children and adolescents: a systematic review and meta-analysis. Obes Rev. 2020;21(1):e12953.
Article
PubMed
Google Scholar
Yao CA, Rhodes RE. Parental correlates in child and adolescent physical activity: a meta-analysis. Int J Behav Nutr Phys Act. 2015;12:10.
Article
PubMed
PubMed Central
Google Scholar
Lawler M, Heary C, Nixon E. Peer support and role modelling predict physical activity change among adolescents over twelve months. J Youth Adolesc. 2020;49(7):1503–16.
Article
PubMed
Google Scholar
Mitchell J, Skouteris H, McCabe M, Ricciardelli LA, Milgrom J, Baur LA, et al. Physical activity in young children: a systematic review of parental influences. Early Child Dev Care. 2012;182(11):1411–37.
Article
Google Scholar
Neshteruk CD, Nezami BT, Nino-Tapias G, Davison KK, Ward DS. The influence of fathers on children's physical activity: a review of the literature from 2009 to 2015. Prev Med. 2017;102:12–9.
Article
PubMed
Google Scholar
Moore LL, Lombardi DA, White MJ, Campbell JL, Oliveria SA, Ellison RC. Influence of parents’ physical activity levels on activity levels of young children. J Pediatr. 1991;118(2):215–9.
Article
CAS
PubMed
Google Scholar
Jago R, Solomon-Moore E, Macdonald-Wallis C, Thompson JL, Lawlor DA, Sebire SJ. Association of parents’ and children’s physical activity and sedentary time in year 4 (8–9) and change between year 1 (5–6) and year 4: a longitudinal study. Int J Behav Nutr Phys Act. 2017;14:110.
Article
PubMed
PubMed Central
Google Scholar
Fisher A, Saxton J, Hill C, Webber L, Purslow L, Wardle J. Psychosocial correlates of objectively measured physical activity in children. Eur J Pub Health. 2011;21(2):145–50.
Article
Google Scholar
Abbott G, Hnatiuk J, Timperio A, Salmon J, Best K, Hesketh KD. Cross-sectional and longitudinal associations between parents’ and preschoolers’ physical activity and television viewing: the HAPPY study. J Phys Act Health. 2016;13:269–74.
Article
PubMed
Google Scholar
Craig L, Mullan K. Parenthood, gender and work-family time in the United States, Australia, Italy, France, and Denmark. J Marriage Fam. 2010;72(5):1344–61.
Article
Google Scholar
Fuemmeler BF, Anderson CB, Masse LC. Parent-child relationship of directly measured physical activity. Int J Behav Nutr Phys Act. 2011;8:17.
Article
PubMed
PubMed Central
Google Scholar
Patnode CD, Lytle LA, Erickson DJ, Sirard JR, Barr-Anderson D, Story M. The relative influence of demographic, individual, social, and environmental factors on physical activity among boys and girls. Int J Behav Nutr Phys Act. 2010;7(1):79.
Article
PubMed
PubMed Central
Google Scholar
Pan SY, Cameron C, DesMeules M, Morrison H, Craig CL, Jiang X. Individual, social, environmental, and physical environmental correlates with physical activity among Canadians: a cross-sectional study. BMC Public Health. 2009;9(1):21.
Article
PubMed
PubMed Central
Google Scholar
Ball K. People, places … and other people?: integrating understanding of intrapersonal, social and environmental determinants of physical activity. J Sci Med Sport. 2006;9(5):367–70.
Article
PubMed
Google Scholar
Heitzler CD, Lytle LA, Erickson DJ, Barr-Anderson D, Sirard JR, Story M. Evaluating a model of youth physical activity. Am J Health Behav. 2010;34(5):593–606.
Article
PubMed
PubMed Central
Google Scholar
Sallis JF, Saelens BE. Assessment of physical activity by self-report: status, limitations, and future directions. Res Q Exerc Sport. 2000;71(sup2):1–14.
Article
PubMed
Google Scholar
Migueles JH, Cadenas-Sanchez C, Ekelund U, Nyström CD, Mora-Gonzalez J, Löf M, Labayen I, Ruiz JR, Ortega FB. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med (Auckland, NZ). 2017;47(9):1821–45.
Article
Google Scholar
Philips N, Sioen I, Michels N, Sleddens E, De Henauw S. The influence of parenting style on health related behavior of children: findings from the ChiBS study. Int J Behav Nutr Phys Act. 2014;11(1):95.
Article
PubMed
PubMed Central
Google Scholar
Fisher A, Smith L, van Jaarsveld CHM, Sawyer A, Wardle J. Are children’s activity levels determined by their genes or environment? A systematic review of twin studies. Prev Med Rep. 2015;2:548–53.
Article
PubMed
PubMed Central
Google Scholar
Westerterp KR. Physical activity and physical activity induced energy expenditure in humans: measurement, determinants, and effects. Front Physiol. 2013;4:90.
Article
PubMed
PubMed Central
Google Scholar
Pucher J, Buehler R. Making cycling irresistible: lessons from The Netherlands, Denmark and Germany. Transp Rev. 2008;28(4):495–528.
Article
Google Scholar
Center for Transport Analytics. Faktaark om cykeltrafik i Danmark 2017. 2019. Accessed 18 May 2020.
Google Scholar
Eriksson M, Rasmussen F, Tynelius P. Genetic factors in physical activity and the equal environment assumption – the Swedish young male twins study. Behav Genet. 2006;36(2):238–47.
Article
PubMed
Google Scholar
Zhang X, Speakman JR. Genetic factors associated with human physical activity: are your genes too tight to prevent you exercising? Endocrinology. 2019;160(4):840–52.
Article
CAS
PubMed
Google Scholar
Song M, Corwyn RF, Bradley RH, Lumeng JC. Temperament and physical activity in childhood. J Phys Act Health. 2017;14(11):837–44.
Article
PubMed
Google Scholar
Rutkowski EM, Connelly CD. Self-efficacy and physical activity in adolescent and parent dyads. J Spec Pediatr Nurs. 2012;17(1):51–60.
Article
PubMed
Google Scholar
Nilsen AKO, Anderssen SA, Resaland GK, Johannessen K, Ylvisaaker E, Aadland E. Boys, older children, and highly active children benefit most from the preschool arena regarding moderate-to-vigorous physical activity: a cross-sectional study of Norwegian preschoolers. Prev Med Rep. 2019;14:100837.
Article
PubMed
PubMed Central
Google Scholar
Howells K, Wellard I, Woolf-May K. Young children’s physical activity levels in primary (elementary) schools: what impact does physical education lessons have for young children? Early Child Dev Care. 2020;190(5):766–77.
Article
Google Scholar
Dugdill L, Brettle A, Hulme C, McCluskey S, Long AF. Workplace physical activity interventions: a systematic review. Int J Workplace Health Manag. 2008;1(1):20–40.
Article
Google Scholar
Ding D, Sallis JF, Kerr J, Lee S, Rosenberg DE. Neighborhood environment and physical activity among youth: a review. Am J Prev Med. 2011;41(4):442–55.
Article
PubMed
Google Scholar
Malina RM. Motor development during infancy and early childhood: overview and suggested directions for research. Int J Sport Health Sci. 2004;2:50–66.
Article
Google Scholar
Jepsen R, Wingstrand A, Abild SL, Ellervik C, Simonsen E, Rasmussen K, Andersen ZJ. Socio-economic determinants of participation in the Lolland-Falster health study. J Public Health (Berl.). 2019. https://doi.org/10.1007/s10389-019-01095-z.
Søgaard AJ, Selmer R, Bjertness E, Thelle D. The Oslo health study: the impact of self-selection in a large, population-based survey. Int J Equity Health. 2004;3(1):3.
Article
PubMed
PubMed Central
Google Scholar
Laaksonen M, Aittomäki A, Lallukka T, Rahkonen O, Saastamoinen P, Silventoinen K, et al. Register-based study among employees showed small nonparticipation bias in health surveys and check-ups. J Clin Epidemiol. 2008;61(9):900–6.
Article
PubMed
Google Scholar