Silventoinen K, Jelenkovic A, Sund R, Hur Y, Yokoyama Y, Honda C, et al. Genetic and environmental effects on body mass index from infancy to the onset of adulthood : an individual-based pooled analysis of 45 twin cohorts participating in the COllaborative project of development of anthropometrical measures in twins (CODATwins). Am J Clin Nutr. 2016;104:371–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silventoinen K, Jelenkovic A, Sund R, Yokoyama Y, Hur Y, Cozen W, et al. Differences in genetic and environmental variation in adult BMI by sex , age , time period , and region : an individual-based pooled analysis of 40 twin cohorts. Am J Clin Nutr. 2017;106:457–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. https://doi.org/10.1038/nature14177.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼ 700 000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–9. https://doi.org/10.1093/hmg/ddy271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silventoinen K, Konttinen H. Obesity and eating behavior from the perspective of twin and genetic research. Neurosci Biobehav Rev. 2020;109:150–65. https://doi.org/10.1016/j.neubiorev.2019.12.012.
Article
CAS
PubMed
Google Scholar
Wainschtein P, Jain DP, Yengo L, Zheng Z, Group TopmAW, Consortium T-O for PM, et al. Recovery of trait heritability from whole genome sequence data Visscher 2019.pdf. Preprint. Available from: bioRxiv 588020.
Khera AV, Chaffin M, Wade KH, Zahid S, Brancale J, Xia R, et al. Polygenic prediction of weight and obesity trajectories from birth to adulthood. Cell. 2019;177(3):587–96. https://doi.org/10.1016/j.cell.2019.03.028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewis CM, Vassos E. Prospects for using risk scores in polygenic medicine. Genome Med. 2017;9(1):9–11. https://doi.org/10.1186/s13073-017-0489-y.
Article
Google Scholar
Bouchard C, Tremblay A, Nadeau A, Després JP, Thériault G, Boulay MR, et al. Genetic effect in resting and exercise metabolic rates. Metabolism. 1989;38(4):364–70. https://doi.org/10.1016/0026-0495(89)90126-1.
Article
CAS
PubMed
Google Scholar
Cai G, Cole SA, Butte NF, Voruganti VS, Comuzzie AG. Genome-wide scan revealed genetic loci for energy metabolism in Hispanic children and adolescents. Int J Obes. 2008;32(4):579–85. https://doi.org/10.1038/ijo.2008.20.
Article
CAS
Google Scholar
Ravussin E, Lillioja S, Knowler W, Christin L, Freymond D, Abbott W, et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med. 1988;318(8):467–72.
Article
CAS
PubMed
Google Scholar
Llewellyn CH, Van Jaarsveld CHM, Boniface D, Carnell S, Wardle J. Eating rate is a heritable phenotype related to weight in children. Am J Clin Nutr. 2008;88(6):1560–6. https://doi.org/10.3945/ajcn.2008.26175.
Article
CAS
PubMed
Google Scholar
Carnell S, Haworth CMA, Plomin R, Wardle J. Genetic influence on appetite in children. Int J Obes. 2008;32(10):1468–73. https://doi.org/10.1038/ijo.2008.127.
Article
CAS
Google Scholar
Llewellyn CH, Van Jaarsveld CHM, Johnson L, Carnell S, Wardle J. Nature and nurture in infant appetite: analysis of the Gemini twin birth cohort. Am J Clin Nutr. 2010;91(5):1172–9. https://doi.org/10.3945/ajcn.2009.28868.
Article
CAS
PubMed
Google Scholar
Van Jaarsveld CHM, Llewellyn CH, Johnson L, Wardle J. Prospective associations between appetitive traits and weight gain in infancy. Am J Clin Nutr. 2011;94(6):1562–7. https://doi.org/10.3945/ajcn.111.015818.
Article
CAS
PubMed
Google Scholar
Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet. 2018;50(1):26–35. https://doi.org/10.1038/s41588-017-0011-x.
Article
CAS
PubMed
Google Scholar
Calton MA, Vaisse C. Narrowing down the role of common variants in the genetic predisposition to obesity. Genome Med. 2009;1(3):1–4. https://doi.org/10.1186/gm31.
Article
CAS
Google Scholar
Llewellyn CH, Trzaskowski M, Van Jaarsveld CHM, Plomin R, Wardle J. Satiety mechanisms in genetic risk of obesity. JAMA Pediatr. 2014;168(4):338–44. https://doi.org/10.1001/jamapediatrics.2013.4944.
Article
PubMed
PubMed Central
Google Scholar
de Lauzon-Guillain B, Koudou YA, Botton J, Forhan A, Carles S, Pelloux V, et al. Association between genetic obesity susceptibility and mother-reported eating behaviour in children up to 5 years. Pediatr Obes. 2019;14(5):1–8. https://doi.org/10.1111/ijpo.12496.
Article
Google Scholar
Stephan Y, Sutin AR, Luchetti M, Caille P, Terracciano A. An examination of potential mediators of the relationship between polygenic scores of BMI and waist circumference and phenotypic adiposity. Psychol Heal. 2020;35(9):1151–61. https://doi.org/10.1080/08870446.2020.1743839.
Article
Google Scholar
Abdulkadir M, Herle M, De Stavola BL, Hübel C, Santos Ferreira DL, Loos RJF, et al. Polygenic score for body mass index is associated with disordered eating in a general population cohort. J Clin Med. 2020;9(4):1187. https://doi.org/10.3390/jcm9041187.
Article
PubMed Central
Google Scholar
Masip G, Silventoinen K, Keski-Rahkonen A, Palviainen T, Sipilä PN, Kaprio J, et al. The genetic architecture of the association between eating behaviors and obesity: combining genetic twin modeling and polygenic risk scores. Am J Clin Nutr. 2020;112(4). https://doi.org/10.1093/ajcn/nqaa181.
Herle M, Smith AD, Kininmonth A, Llewellyn C. The role of eating Behaviours in genetic susceptibility to obesity. Curr Obes Rep. 2020. https://doi.org/10.1007/s13679-020-00402-0.
Ahrens W, Siani A, Adan R, De Henauw S, Eiben G, Gwozdz W, et al. Cohort Profile: The transition from childhood to adolescence in European children-how I.Family extends the IDEFICS cohort. Int J Epidemiol. 2017;46(5):1394–1395j. https://doi.org/10.1093/ije/dyw317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peplies J, Günther K, Gottlieb A, Lübke A, Bammann K, Ahrens W. Biological samples---standard operating procedures for collection, shipment, storage and documentation. In: Bammann K, Lissner L, Pigeot I, Ahrens W, editors. Instruments for health surveys in children and adolescents. Cham: Springer International Publishing; 2019. p. 57–76. https://doi.org/10.1007/978-3-319-98857-3_4.
Chapter
Google Scholar
Bammann K, Peplies J, Marild S, Molnar D, Suling M, Siani A. Physical examinations. In: Bammann K, Lissner L, Pigeot I, Ahrens W, editors. Instruments for health surveys in children and adolescents. Cham: Springer International Publishing; 2019. p. 47–55. https://doi.org/10.1007/978-3-319-98857-3_6.
Chapter
Google Scholar
Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7(4):284–94. https://doi.org/10.1111/j.2047-6310.2012.00064.x.
Article
CAS
PubMed
Google Scholar
Nagy P, Kovacs E, Moreno LA, Veidebaum T, Tornaritis M, Kourides Y, et al. Percentile reference values for anthropometric body composition indices in European children from the IDEFICS study. Int J Obes. 2014;38:S15–25. https://doi.org/10.1038/ijo.2014.131.
Article
Google Scholar
Baughcum AE, Powers SW, Johnson SB, Chamberlin LA, Deeks CM, Jain A, et al. Maternal feeding practices and beliefs and their relationships to overweight in early childhood. J Dev Behav Pediatr. 2001;22(6):391–408. https://doi.org/10.1097/00004703-200112000-00007.
Article
CAS
PubMed
Google Scholar
Weale ME. Quality Control for Genome-Wide Association Studies. In: Barnes M, Breen G, editors. Genetic Variation. Methods in Molecular Biology (Methods and Protocols). Totowa: Humana Press; 2010. https://doi.org/10.1007/978-1-60327-367-1_19.
Chapter
Google Scholar
UNESCO. The international standard classification of education (ISCED). ISCED 2011. Montreal: UNESCO Institute for Statistics; 2012. https://doi.org/10.1007/BF02207511.
Book
Google Scholar
Iguacel I, Michels N, Fernández-Alvira JM, Bammann K, De Henauw S, Felső R, et al. Associations between social vulnerabilities and psychosocial problems in European children. Results from the IDEFICS study. Eur Child Adolesc Psychiatry. 2017;26(9):1105–17. https://doi.org/10.1007/s00787-017-0998-7.
Article
PubMed
Google Scholar
Huybrechts I, Börnhorst C, Pala V, Moreno LA, Barba G, Lissner L, et al. Evaluation of the children’s eating habits questionnaire used in the IDEFICS study by relating urinary calcium and potassium to milk consumption frequencies among european children. Int J Obes. 2011;35:S69–78. https://doi.org/10.1038/ijo.2011.37.
Article
CAS
Google Scholar
Pala V, Reisch LA, Lissner L. Dietary behaviour in children, adolescents and families: the eating habits questionnaire (EHQ). In: Bammann K, Lissner L, Pigeot I, Ahrens W, editors. Instruments for health surveys in children and adolescents. Cham: Springer International Publishing; 2019. p. 103–33. https://doi.org/10.1007/978-3-319-98857-3_6.
Chapter
Google Scholar
Peplies J, Günther K, Bammann K, Fraterman A, Russo P, Veidebaum T, et al. Influence of sample collection and preanalytical sample processing on the analyses of biological markers in the European multicentre study IDEFICS. Int J Obes. 2011;35:S104–12. https://doi.org/10.1038/ijo.2011.41.
Article
CAS
Google Scholar
Stekhoven DJ, Bühlmann P. Missforest-non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28(1):112–8. https://doi.org/10.1093/bioinformatics/btr597.
Article
CAS
PubMed
Google Scholar
Williams RL. A note on robust variance estimation for cluster-correlated data. Biometrics. 2000;56:645–6. https://doi.org/10.1111/j.0006-341X.2000.00645.x.
Article
CAS
PubMed
Google Scholar
Hu LT, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model. 1999;6(1):1–55. https://doi.org/10.1080/10705519909540118.
Article
Google Scholar
Bentler PM. Comparative fit indexes in structural models. Psychol Bull. 1990 Mar;107(2):238–46. https://doi.org/10.1037/0033-2909.107.2.238.
Article
CAS
PubMed
Google Scholar
VanderWeele T. Explanation in causal inference: methods for mediation and interaction. New York: Oxford University Press; 2015.
Google Scholar
Discacciati A, Bellavia A, Lee JJ, Mazumdar M, Valeri L. Med4way: a Stata command to investigate mediating and interactive mechanisms using the four-way effect decomposition. Int J Epidemiol. 2019;48(1):15–20. https://doi.org/10.1093/ije/dyy236.
Article
Google Scholar
VanderWeele TJ. Principles of confounder selection. Eur J Epidemiol. 2019;34(3):211–9. https://doi.org/10.1007/s10654-019-00494-6.
Article
PubMed
PubMed Central
Google Scholar
Derks IPM, Sijbrands EJG, Wake M, Qureshi F, van der Ende J, Hillegers MHJ, et al. Eating behavior and body composition across childhood: a prospective cohort study. Int J Behav Nutr Phys Act. 2018;15(1):1–9. https://doi.org/10.1186/s12966-018-0725-x.
Article
Google Scholar
Costa A, Severo M, Vilela S, Fildes A, Oliveira A. Bidirectional relationships between appetitive behaviours and body mass index in childhood: a cross-lagged analysis in the generation XXI birth cohort. Eur J Nutr. 2021;60(1):239–47. https://doi.org/10.1007/s00394-020-02238-9.
Article
CAS
PubMed
Google Scholar
Wardle J, Guthrie CA, Sanderson S, Rapoport L. Development of the children’s eating behaviour questionnaire. J Child Psychol Psychiatry Allied Discip. 2001;42(7):963–70. https://doi.org/10.1111/1469-7610.00792.
Article
CAS
Google Scholar
Konttinen H, Llewellyn C, Silventoinen K, Joensuu A, Männistö S, Salomaa V, et al. Genetic predisposition to obesity, restrained eating and changes in body weight : a population-based prospective study. Int J Obes. 2018;42(4):858–65. https://doi.org/10.1038/ijo.2017.278.
Article
CAS
Google Scholar
Van Der Klaauw AA, Farooqi IS. The hunger genes: pathways to obesity. Cell. 2015;161(1):119–32. https://doi.org/10.1016/j.cell.2015.03.008.
Article
CAS
PubMed
Google Scholar
Littleton SH, Berkowitz RI, Grant SFA. Genetic Determinants of Childhood Obesity. Mol Diagnosis Ther. 2020. https://doi.org/10.1007/s40291-020-00496-1.
Loos RJF, Yeo GSH. The bigger picture of FTO - the first GWAS-identified obesity gene. Nat Rev Endocrinol. 2014;10(1):51–61. https://doi.org/10.1038/nrendo.2013.227.The.
Article
CAS
PubMed
Google Scholar
Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte Browning in humans. N Engl J Med. 2015;373(10):895–907. https://doi.org/10.1056/nejmoa1502214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hubáček JA, Pikhart H, Peasey A, Kubínová R, Bobák M. FTO variant, energy intake, physical activity and basal metabolic rate in caucasians. the HAPIEE study. Physiol Res. 2011;60(1):175–83. https://doi.org/10.33549/physiolres.932066.
Article
PubMed
Google Scholar
Gerken T, Girard CA, Tung YCL, Webby CJ, Saudek V, Hewitson KS, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318(5855):1469–72. https://doi.org/10.1126/science.1151710.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huvenne H, Dubern B, Clément K, Poitou C. Rare genetic forms of Obesity : clinical approach and current treatments in 2016. Obes Facts. 2016;9:158–73. https://doi.org/10.1159/000445061.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinsbekk S, Belsky D, Guzey IC, Wardle J, Wichstrom L. Polygenic risk, appetite traits, andweight gain in middle childhood a longitudinal study. JAMA Pediatr. 2016;170(2). https://doi.org/10.1001/jamapediatrics.2015.4472.
Weise CM, Bachmann T, Pleger B. Brain structural differences in monozygotic twins discordant for body mass index. Neuroimage. 2019;201:116006. https://doi.org/10.1016/j.neuroimage.2019.07.019.
Article
PubMed
Google Scholar
Ndiaye FK, Huyvaert M, Ortalli A, Canouil M, Lecoeur C, Verbanck M, et al. The expression of genes in top obesity-associated loci is enriched in insula and substantia nigra brain regions involved in addiction and reward. Int J Obes. 2020;44(2):539–43. https://doi.org/10.1038/s41366-019-0428-7.
Article
CAS
Google Scholar
O’Brien PD, Hinder LM, Callaghan BC, Feldman EL. Neurological consequences of obesity. Lancet Neurol. 2017;16(6):465–77. https://doi.org/10.1016/S1474-4422(17)30084-4.
Article
PubMed
PubMed Central
Google Scholar
Ahn J, Wu H, Lee K. Integrative analysis revealing human adipose-specific genes and consolidating obesity loci. Sci Rep. 2019;9(1):1–13. https://doi.org/10.1038/s41598-019-39582-8.
Article
CAS
Google Scholar
Hense S, Pohlabeln H, Michels N, Mårild S, Lissner L, Kovacs E, et al. Determinants of attrition to follow-up in a multicentre cohort study in children-results from the IDEFICS study. Epidemiol Res Int. 2013;2013:1–9. https://doi.org/10.1155/2013/936365.
Article
Google Scholar
Nemecek D, Sebelefsky C, Woditschka A, Voitl P. Overweight in children and its perception by parents: cross-sectional observation in a general pediatric outpatient clinic. BMC Pediatr. 2017;17(1):1–10. https://doi.org/10.1186/s12887-017-0964-z.
Article
Google Scholar
Shloim N, Edelson LR, Martin N, Hetherington MM. Parenting styles, feeding styles, feeding practices, and weight status in 4-12 year-old children: a systematic review of the literature. Front Psychol. 2015;6. https://doi.org/10.3389/fpsyg.2015.01849.
Loth KA, Mohamed N, Trofholz A, Tate A, Berge JM. Associations between parental perception of- and concern about-child weight and use of specific food-related parenting practices. Appetite. 2021;160:105068. https://doi.org/10.1016/j.appet.2020.105068.
Article
PubMed
Google Scholar
Bammann K, Gwozdz W, Pischke C, Eiben G, Fernandez-Alvira JM, De Henauw S, et al. The impact of familial, behavioural and psychosocial factors on the SES gradient for childhood overweight in Europe. A longitudinal study. Int J Obes. 2017;41(1):54–60. https://doi.org/10.1038/ijo.2016.137.
Article
CAS
Google Scholar