Bort-Roig J, Gilson ND, Puig-Ribera A, Contreras RS, Trost SG. Measuring and influencing physical activity with smartphone technology: a systematic review. Sports Med. 2014;44(5):671–86.
Article
PubMed
Google Scholar
Akinosun AS, Polson R, Diaz-Skeete Y, De Kock JH, Carragher L, Leslie S, et al. Digital technology interventions for risk factor modification in patients with cardiovascular disease: Systematic review and meta-analysis. JMIR mHealth uHealth. 2021;9(3):e21061.
Article
PubMed
PubMed Central
Google Scholar
Shah LM, Ding J, Spaulding EM, Yang WE, Lee MA, Demo R, et al. Sociodemographic Characteristics Predicting Digital Health Intervention Use After Acute Myocardial Infarction. J Cardiovasc Transl Res. 2021:1–11.
Davis AJ, Parker HM, Gallagher R. Gamified applications for secondary prevention in patients with high cardiovascular disease risk: A systematic review of effectiveness and acceptability. J Clin Nursing. 2021.
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596.
Article
PubMed
Google Scholar
Ekelund U, Tarp J, Steene-Johannessen J, Hansen BH, Jefferis B, Fagerland MW, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. BMJ. 2019;366:l4570.
Article
PubMed
PubMed Central
Google Scholar
Neubeck L, Freedman SB, Clark AM, Briffa T, Bauman A, Redfern J. Participating in cardiac rehabilitation: a systematic review and meta-synthesis of qualitative data. Eur J Prev Cardiol. 2012;19(3):494–503.
Article
PubMed
Google Scholar
Yerrakalva D, Yerrakalva D, Hajna S, Griffin S. Effects of mobile health app interventions on sedentary time, physical activity, and fitness in older adults: Systematic review and meta-analysis. J Med Internet Res. 2019;21(11):e14343.
Article
PubMed
PubMed Central
Google Scholar
Laranjo L, Ding D, Heleno B, Kocaballi B, Quiroz JC, Tong HL, et al. Do smartphone applications and activity trackers increase physical activity in adults? Systematic review, meta-analysis and metaregression. Brit J Sport Med. 2021;55(8):422–32.
Article
Google Scholar
Patterson K, Davey R, Keegan R, Freene N. Smartphone applications for physical activity and sedentary behaviour change in people with cardiovascular disease: A systematic review and meta-analysis. PLOS ONE. 2021;16(10):e0258460.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: Building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013;46(1):81–95.
Article
PubMed
Google Scholar
Michie S, Abraham C, Whittington C, McAteer J, Gupta S. Effective techniques in healthy eating and physical activity interventions: A meta-regression. Health Psychol. 2009;28(6):690.
Article
PubMed
Google Scholar
Duff OM, Walsh DM, Furlong BA, O’Connor NE, Moran KA, Woods CB. Behavior change techniques in physical activity eHealth interventions for people with cardiovascular disease: Systematic review. JMIR. 2017;19(8):e281.
PubMed
PubMed Central
Google Scholar
Compernolle S, DeSmet A, Poppe L, Crombez G, De Bourdeaudhuij I, Cardon G, et al. Effectiveness of interventions using self-monitoring to reduce sedentary behavior in adults: A systematic review and meta-analysis. Int J Behav Nutr Phy. 2019;16(1):1–16.
Article
Google Scholar
Prince S, Saunders T, Gresty K, Reid R. A comparison of the effectiveness of physical activity and sedentary behaviour interventions in reducing sedentary time in adults: A systematic review and meta-analysis of controlled trials. Obes Rev. 2014;15(11):905–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj. 2021;372.
Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions, vol. 4: John Wiley & Sons; 2011.
Google Scholar
Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: Template for intervention description and replication (TIDieR) checklist and guide. BMJ. 2014;348.
Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366(l4898):366. https://doi.org/10.1136/bmj.i4898.
Sterne JACHM, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, et al. ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ. 2016;355. https://doi.org/10.1136/bmj.i4919.
Quality assessment tool for before-after (pre-post) studies with no control group. http://www.nhlbi.nih.gov/health-pro/guidelines/in-develop/cardiovascular-risk-reduction/tools/before-after.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977:159–74.
Practical meta-analysis effect size calculator. https://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-SMD1.php.
Cohen J. A power primer. Psychol Bull. 1992;112(1):155–9.
Article
CAS
PubMed
Google Scholar
Widmer RJ, Allison TG, Lerman LO, Lerman A. Digital health intervention as an adjunct to cardiac rehabilitation reduces cardiovascular risk factors and rehospitalizations. J Cardiovasc Transl. 2015;8(5):283–92.
Article
Google Scholar
Bürkner P-C. brms: An R package for Bayesian multilevel models using Stan. J Stat Softw. 2017;80(1):1–28.
Article
Google Scholar
Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, et al. Stan: A probabilistic programming language. J Stat Softw. 2017;76(1):1–32.
Article
Google Scholar
Vehtari A, Gelman A, Simpson D, Carpenter B, Bürkner P-C: Rank-normalization, folding, and localization: An improved R for assessing convergence of MCMC. arXiv preprint arXiv:190308008 2021.
Piironen J, Vehtari A. Sparsity information and regularization in the horseshoe and other shrinkage priors. Electr J Stat. 2017;11(2):5018–51.
Google Scholar
ggdist: Visualizations of Distributions and Uncertainty, R package version 2.2. 0. https://mjskay.github.io/ggdist/.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.
Book
Google Scholar
Duscha BD, Piner LW, Patel MP, Craig KP, Brady M, IiimcGarrah RW, et al. Effects of a 12-week mHealth program on peak VO2 and physical activity patterns after completing cardiac rehabilitation: A randomized controlled trial. Am Heart J. 2018;199:105–14.
Article
PubMed
Google Scholar
Duscha BD, Piner LW, Patel MP, Crawford LE, Jones WS, Patel MR, et al. Effects of a 12-Week mHealth program on functional capacity and physical activity in patients with peripheral artery disease. Am J Cardiol. 2018;122(5):879–84.
Article
PubMed
Google Scholar
Freene N, van Berlo S, McManus M, Mair T, Davey R. A behavioral change smartphone app and program (ToDo-CR) to decrease sedentary behavior in cardiac rehabilitation participants: Prospective feasibility cohort study. JMIR Form Res. 2020;4(11):e17359.
Article
PubMed
PubMed Central
Google Scholar
Grau-Pellicer M, Lalanza JF, Jovell-Fernández E, Capdevila L. Impact of mHealth technology on adherence to healthy PA after stroke: A randomized study. Top Stroke Rehabil. 2020;27(5):354–68.
Article
PubMed
Google Scholar
Johnston N, Bodegard J, Jerström S, Åkesson J, Brorsson H, Alfredsson J, et al. Effects of interactive patient smartphone support app on drug adherence and lifestyle changes in myocardial infarction patients: A randomized study. Am Heart J. 2016;178:85–94.
Article
PubMed
Google Scholar
Kim JY, Wineinger NE, Steinhubl SR. The influence of wireless self-monitoring program on the relationship between patient activation and health behaviors, medication adherence, and blood pressure levels in hypertensive patients: A substudy of a randomized controlled trial. JMIR. 2016;18(6):e116.
PubMed
PubMed Central
Google Scholar
Lunde P, Bye A, Bergland A, Grimsmo J, Jarstad E, Nilsson BB. Long-term follow-up with a smartphone application improves exercise capacity post cardiac rehabilitation: A randomized controlled trial. Eur J Prev Cardiol. 2020;27(16):1782–92.
Article
PubMed
PubMed Central
Google Scholar
Lv N, Xiao L, Simmons ML, Rosas LG, Chan A, Entwistle M. Personalized hypertension management using patient-generated health data integrated with electronic health records (EMPOWER-H): Six-month pre-post study. JMIR. 2017;19(9):e311.
PubMed
PubMed Central
Google Scholar
Nabutovsky I, Ashri S, Nachshon A, Tesler R, Shapiro Y, Wright E, et al. Feasibility, safety, and effectiveness of a mobile application in cardiac rehabilitation. Israel Med Assoc J. 2020;22(6):357–63.
Google Scholar
Paul L, Wyke S, Brewster S, Sattar N, Gill JMR, Alexander G, et al. Increasing physical activity in stroke survivors using STARFISH, an interactive mobile phone application: A pilot study. Top Stroke Rehabil. 2016;23(3):170–7.
Article
PubMed
Google Scholar
Persell SD, Peprah YA, Lipiszko D, Lee JY, Li JJ, Ciolino JD, et al. Effect of home blood pressure monitoring via a smartphone hypertension coaching application or tracking application on adults with uncontrolled hypertension: A randomized clinical trial. JAMA Network Open. 2020;3(3):e200255.
Article
PubMed
PubMed Central
Google Scholar
Requena M, Montiel E, Baladas M, Muchada M, Boned S, López R, et al. Farmalarm: Application for mobile devices improves risk factor control after stroke. Stroke. 2019;50(7):1819–24.
Article
PubMed
Google Scholar
Salvi D, Ottaviano M, Muuraiskangas S, Martínez-Romero A, Vera-Muñoz C, Triantafyllidis A, et al. An m-Health system for education and motivation in cardiac rehabilitation: The experience of HeartCycle guided exercise. J Telemed Telecare. 2018;24(4):303–16.
Article
PubMed
Google Scholar
Sengupta A, Beckie T, Dutta K, Dey A, Chellappan S. A mobile health intervention system for women with coronary heart disease: Usability study. JMIR Form Res. 2020;4(6):e16420.
Article
PubMed
PubMed Central
Google Scholar
Song Y, Ren C, Liu P, Tao L, Zhao W, Gao W. Effect of smartphone-based telemonitored exercise rehabilitation among patients with coronary heart disease. J Cardiovasc Transl. 2020;13(4):659–67.
Article
Google Scholar
Weerahandi H, Paul S, Quintiliani LM, Chokshi S, Mann DM. A mobile health coaching intervention for controlling hypertension: Single-arm pilot pre-post study. JMIR Form Res. 2020;4(5):e13989.
Article
PubMed
PubMed Central
Google Scholar
Werhahn SM, Dathe H, Rottmann T, Franke T, Vahdat D, Hasenfuß G, et al. Designing meaningful outcome parameters using mobile technology: A new mobile application for telemonitoring of patients with heart failure. ESC Heart Fail. 2019;6(3):516–25.
Article
PubMed
PubMed Central
Google Scholar
Widmer RJ, Allison TG, Lennon R, Lopez-Jimenez F, Lerman LO, Lerman A. Digital health intervention during cardiac rehabilitation: A randomized controlled trial. Am Heart J. 2017;188:65–72.
Article
PubMed
Google Scholar
Conroy DE, Maher JP, Elavsky S, Hyde AL, Doerksen SE. Sedentary behavior as a daily process regulated by habits and intentions. Health Psychol. 2013;32(11):1149.
Article
PubMed
PubMed Central
Google Scholar
Gardner B, Richards R, Lally P, Rebar A, Thwaite T, Beeken RJ. Breaking habits or breaking habitual behaviours? Old habits as a neglected factor in weight loss maintenance. Appetite. 2021;162:105183.
Article
PubMed
Google Scholar
Carraça E, Encantado J, Battista F, Beaulieu K, Blundell J, Busetto L, van Baak M, Dicker D, Ermolao A, Farpour-Lambert N. Effective behavior change techniques to promote physical activity in adults with overweight or obesity: a systematic review and meta-analysis. Obes Rev. 2021:e13258.
Webb TL, Sniehotta FF, Michie S. Using theories of behaviour change to inform interventions for addictive behaviours. Addiction. 2010;105(11):1879–92.
Article
PubMed
Google Scholar
Schroé H, Van Dyck D, De Paepe A, Poppe L, Loh WW, Verloigne M, et al. Which behaviour change techniques are effective to promote physical activity and reduce sedentary behaviour in adults: a factorial randomized trial of an e-and m-health intervention. Int J Behav Nutr Phys Act. 2020;17(1):1–16.
Article
Google Scholar
Kanejima Y, Kitamura M, Izawa KP. Self-monitoring to increase physical activity in patients with cardiovascular disease: A systematic review and meta-analysis. Aging Clin Exp Res. 2019;31(2):163–73.
Article
PubMed
Google Scholar