Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob Health. 2018;6(10):e1077–86.
Article
PubMed
Google Scholar
McLeroy KR, Bibeau D, Steckler A, Glanz K. An ecological perspective on health promotion programs. Health Educ Q. 1988;15(4):351–77.
Article
CAS
PubMed
Google Scholar
Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. An ecological approach to creating active living communities. Annu Rev Public Health. 2006;27:297–322.
Article
PubMed
Google Scholar
Spence JC, Lee RE. Toward a comprehensive model of physical activity. Psychol Sport Exerc. 2003;4(1):7–24.
Article
Google Scholar
Bopp M, Gayah VV, Campbell ME. Examining the link between public transit use and active commuting. Int J Environ Res Public Health. 2015 Apr;12(4):4256–74.
Article
PubMed
PubMed Central
Google Scholar
Burton NW, Turrell G, Oldenburg B. Participation in recreational physical activity: why do socioeconomic groups differ? Health Educ Behav. 2003;30(2):225–44.
Article
PubMed
Google Scholar
Tappe MK, Duda JL, Ehrnwald PM. Perceived barriers to exercise among adolescents. J Sch Health. 1989 Apr 1;59(4):153–5.
Article
CAS
PubMed
Google Scholar
Salmon J, Owen N, Crawford D, Bauman A, Sallis JF. Physical activity and sedentary behavior: a population-based study of barriers, enjoyment, and preference. Health Psychol. 2003;22(2):178–88.
Article
PubMed
Google Scholar
O’Donoghue G, Perchoux C, Mensah K, Lakerveld J, van der Ploeg H, Bernaards C, et al. A systematic review of correlates of sedentary behaviour in adults aged 18–65 years: a socio-ecological approach. BMC Public Health. 2016;16(1):163.
Article
PubMed
PubMed Central
Google Scholar
Tucker P, Gilliland J. The effect of season and weather on physical activity: a systematic review. Public Health. 2007;121(12):909–22.
Article
CAS
PubMed
Google Scholar
Chan CB, Ryan DA. Assessing the effects of weather conditions on physical activity participation using objective measures. Int J Environ Res Public Health. 2009;6(10):2639–54.
Article
PubMed
PubMed Central
Google Scholar
Baranowski T, Thompson WO, DuRant RH, Baranowski J, Puhl J. Observations on physical activity in physical locations: age, gender, ethnicity, and month effects. Res Q Exerc Sport. 1993;64(2):127–33.
Article
CAS
PubMed
Google Scholar
Haggarty P, McNeill G, Manneh MK, Davidson L, Milne E, Duncan G, et al. The influence of exercise on the energy requirements of adult males in the UK. Br J Nutr. 1994;72(6):799–813.
Article
CAS
PubMed
Google Scholar
Rich C, Griffiths LJ, Dezateux C. Seasonal variation in accelerometer-determined sedentary behaviour and physical activity in children: a review. Int J Behav Nutr Phys Act. 2012;9(1):49.
Article
PubMed
PubMed Central
Google Scholar
Chan CB, Ryan DA, Tudor-Locke C. Relationship between objective measures of physical activity and weather: a longitudinal study. Int J Behav Nutr Phys Act. 2006;3:21.
Article
PubMed
PubMed Central
Google Scholar
The Nobel Peace Prize Award Ceremony 2007 [Internet]. 2007; Oslo, Norway. Available from: NobelPrize.org
Friel S, Bowen K, Campbell-Lendrum D, Frumkin H, McMichael AJ, Rasanathan K. Climate change, noncommunicable diseases, and development: the relationships and common policy opportunities. Annu Rev Public Health. 2011;32:133–47.
Article
CAS
PubMed
Google Scholar
Vogelstein F. The untold story: How the iPhone blew up the wireless industry. Wired [Internet]. 2008; Available from: https://www.wired.com/2008/01/ff-iphone/
About Fitbit [Internet]. Available from: https://www.fitbit.com/us/about-us
Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016 Sep 24;388(10051):1302–10.
Article
PubMed
Google Scholar
Stamatakis E, Gale J, Bauman A, Ekelund U, Hamer M, Ding D. Sitting time, physical activity, and risk of mortality in adults. J Am Coll Cardiol. 2019;73(16):2062–72.
Carson V, Spence J. Seasonal variation in physical activity among children and adolescents: a review. Pediatr Exerc Sci. 2010;22:81–92.
Article
PubMed
Google Scholar
Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol. 2018 Nov 19;18(1):143.
Article
PubMed
PubMed Central
Google Scholar
U.S. Department of Health and Human Services. 2018 Physical Activity Guidelines Advisory Committee Scientific Report. U.S. Department of Health and Human Services; 2018 p. 779.
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Systematic Reviews. 2016;5(1):210.
Article
PubMed
PubMed Central
Google Scholar
Kellermeyer L, Harnke B, Knight S. Covidence and Rayyan. J Med Libr Assoc. 2018;106(4):580–3.
Article
PubMed Central
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097–7.
Aspvik NP, Viken H, Ingebrigtsen JE, Zisko N, Mehus I, Wisløff U, et al. Do weather changes influence physical activity level among older adults? – the generation 100 study. PLoS One. 2018;13(7):e0199463.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kolle E, Steene-Johannessen J, Andersen LB, Anderssen SA. Seasonal variation in objectively assessed physical activity among children and adolescents in Norway: a cross-sectional study. Int J Behav Nutr Phys Act. 2009 Jun 29;6:36.
Article
PubMed
PubMed Central
Google Scholar
Koolhaas CM, van Rooij FJA, Schoufour JD, Cepeda M, Tiemeier H, Brage S, et al. Objective measures of activity in the elderly: distribution and associations with demographic and health factors. J Am Med Dir Assoc. 2017 Oct 1;18(10):838–47.
Article
PubMed
PubMed Central
Google Scholar
Rowlands AV, Pilgrim EL, Eston RG. Seasonal changes in children’s physical activity: an examination of group changes, intra-individual variability and consistency in activity pattern across season. Ann Hum Biol. 2009 Jan 1;36(4):363–78.
Article
PubMed
Google Scholar
Shen B, Alexander G, Milberger S, Jen K-LC. An exploratory study of seasonality and preschoolers’ physical activity engagement. J Phys Act Health. 2013 Sep;10(7):993–9.
Article
PubMed
Google Scholar
Atkin AJ, Sharp SJ, Harrison F, Brage S, Van Sluijs EMF. Seasonal variation in children’s physical activity and sedentary time. Med Sci Sports Exerc. 2016 Mar;48(3):449–56.
Cepeda M, Koolhaas CM, van Rooij FJA, Tiemeier H, Guxens M, Franco OH, et al. Seasonality of physical activity, sedentary behavior, and sleep in a middle-aged and elderly population: the Rotterdam study. Maturitas. 2018 Apr;110:41–50.
Article
PubMed
Google Scholar
Larouche R, Blanchette S, Faulkner G, Riazi N, Trudeau F, Tremblay MS. Correlates of children’s physical activity: a Canadian multisite study. Med Sci Sports Exerc. 2019 Dec;51(12):2482–90.
Article
PubMed
Google Scholar
Albrecht BM, Stalling I, Recke C, Bammann K. Accelerometer-assessed outdoor physical activity is associated with meteorological conditions among older adults: cross-sectional results from the OUTDOOR ACTIVE study. PLoS One. 2020;15(1):e0228053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rahman S, Maximova K, Carson V, Jhangri GS, Veugelers PJ. Stay in or play out? The influence of weather conditions on physical activity of grade 5 children in Canada. Can J Public Health. 2019;110(2):169–77.
Article
PubMed
PubMed Central
Google Scholar
Wu Y-T, Luben R, Wareham N, Griffin S, Jones AP. Weather, day length and physical activity in older adults: cross-sectional results from the European prospective investigation into Cancer and nutrition (EPIC) Norfolk cohort. PLoS One. 2017;12(5):e0177767.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lewis LK, Maher C, Belanger K, Tremblay M, Chaput J-P, Olds T. At the mercy of the gods: associations between weather, physical activity, and sedentary time in children. Pediatr Exerc Sci. 2016;28(1):152–63.
Ogawa S, Seko T, Ito T, Mori M. Differences in physical activity between seasons with and without snowfall among elderly individuals residing in areas that receive snowfall. J Phys Ther Sci. 2019 Jan;31(1):12–6.
Article
PubMed
PubMed Central
Google Scholar
Pagels P, Raustorp A, Guban P, Fröberg A, Boldemann C. Compulsory school in- and outdoors—implications for school children’s physical activity and health during one academic year. Int J Environ Res Public Health. 2016;13(7):699.
Patnode CD, Lytle LA, Erickson DJ, Sirard JR, Barr-Anderson D, Story M. The relative influence of demographic, individual, social, and environmental factors on physical activity among boys and girls. Int J Behav Nutr Phys Act. 2010 Nov 3;7(1):79.
Article
PubMed
PubMed Central
Google Scholar
Duncan JS, Hopkins WG, Schofield G, Duncan EK. Effects of weather on pedometer-determined physical activity in children. Med Sci Sports Exerc. 2008 Aug;40(8):1432–8.
Article
PubMed
Google Scholar
McCrorie PRW, Duncan E, Granat MH, Stansfield BW. Seasonal variation in the distribution of daily stepping in 11–13 year old school children. Int J Exerc Sci. 2015;8:4.
Google Scholar
World Bank Country and Lending Groups [Internet]. The World Bank. 2020 [cited 2020 Jun 5]. Available from: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
Ma BD, Ng SL, Schwanen T, Zacharias J, Zhou M, Kawachi I, et al. Pokémon GO and physical activity in Asia: multilevel study. J Med Internet Res. 2018;20(6):e217.
Arnardottir NY, Oskarsdottir ND, Brychta RJ, Koster A, Van Domelen DR, Caserotti P, et al. Comparison of summer and winter objectively measured physical activity and sedentary behavior in older adults: age, gene/environment susceptibility Reykjavik study. Int J Environ Res Public Health. 2017;14(10):1268.
Edwards NM, Myer GD, Kalkwarf HJ, Woo JG, Khoury PR, Hewett TE, et al. Outdoor temperature, precipitation, and wind speed affect physical activity levels in children: a longitudinal cohort study. J Phys Act Health. 2015 Aug;12(8):1074–81.
Article
PubMed
Google Scholar
Hjorth MF, Chaput J-P, Michaelsen K, Astrup A, Tetens I, Sjödin A. Seasonal variation in objectively measured physical activity, sedentary time, cardio-respiratory fitness and sleep duration among 8-11 year-old Danish children: a repeated-measures study. BMC Public Health. 2013 Sep 8;13:808.
Article
PubMed
PubMed Central
Google Scholar
Schepps MA, Shiroma EJ, Kamada M, Harris TB, Lee I-M. Day length is associated with physical activity and sedentary behavior among older women. Sci Rep. 2018;8(1):6602.
Article
PubMed
PubMed Central
CAS
Google Scholar
Silva P, Santos R, Welk G, Mota J. Seasonal differences in physical activity and sedentary patterns: the relevance of the PA context. J Sports Sci Med. 2011;10(1):66–72.
PubMed
PubMed Central
Google Scholar
Chang Z, Wang S, Zhang X. Seasonal variations in physical activity and sedentary behavior among preschool children in a Central China city. Am J Hum Biol. 2020 Feb;25:e23406.
Google Scholar
Nagy L, Faisal M, Horne M, Collings P, Barber S, Mohammed M. Factors associated with accelerometer measured movement behaviours among White British and south Asian children aged 6–8 years during school terms and school holidays. BMJ Open. 2019;9:e025071.
Article
PubMed
PubMed Central
Google Scholar
Aadland E, Andersen LB, Anderssen SA, Resaland GK, Resaland GK. A comparison of 10 accelerometer non-wear time criteria and logbooks in children. BMC Public Health. 2018;18:1–1.
Article
Google Scholar
Aebi NJ, Bringolf-Isler B, Schaffner E, Caviezel S, Imboden M, Probst-Hensch N. Patterns of cross-sectional and predictive physical activity in Swiss adults aged 52+: results from the SAPALDIA cohort. Swiss Med Wkly. 2020;150:w20266.
PubMed
Google Scholar
Van Kann DHH, de Vries SI, Schipperijn J, de Vries NK, Jansen MWJ, Kremers SPJ. Schoolyard characteristics, physical activity, and sedentary behavior: combining GPS and accelerometry. J Sch Health. 2016;86(12):913–21.
Yildirim M, Schoeni A, Singh AS, Altenburg TM, Brug J, De Bourdeaudhuij I, et al. Daily variations in weather and the relationship with physical activity and sedentary time in European 10- to 12-year-olds: the ENERGY-project. J Phys Act Health. 2014 Feb;11(2):419–25.
Article
PubMed
Google Scholar
Sit CHP, Huang WY, Yu JJ, McKenzie TL. Accelerometer-assessed physical activity and sedentary time at school for children with disabilities: seasonal variation. Int J Environ Res Public Health. 2019;16(17):3163.
Harrison F, Jones AP, Bentham G, van Sluijs EMF, Cassidy A, Griffin SJ. The impact of rainfall and school break time policies on physical activity in 9-10 year old British children: a repeated measures study. Int J Behav Nutr Phys Act. 2011 May 24;8:47.
Article
PubMed
PubMed Central
Google Scholar
Katapally TR, Rainham D, Muhajarine N. The influence of weather variation, urban design and built environment on objectively measured sedentary behaviour in children. AIMS Public Health. 2016;3(4):663–81.
Harrison F, van Sluijs EMF, Corder K, Ekelund U, Jones A. The changing relationship between rainfall and children’s physical activity in spring and summer: a longitudinal study. International Journal of Behavioral Nutrition & Physical Activity. 2015;12:1–9.
Article
Google Scholar
Aibar Solana A, Bois JE, Zaragoza J, Bru N, Paillard T, Generelo E. Adolescents’ sedentary behaviors in two European cities. Research Quarterly for Exercise & Sport. 2015;86(3):233–43.
Article
Google Scholar
Pechová J, Pelclová J, Dygryn J, Zajac-Gawlak I, Tlucakova L. Sedentary behaviour patterns and spring-autumn seasonality in older central European adults. Journal of Physical Education & Sport. 2019;19(2):1092–8.
Google Scholar
Davis MG, Fox KR, Hillsdon M, Sharp DJ, Coulson JC, Thompson JL. Objectively measured physical activity in a diverse sample of older urban UK adults. Med Sci Sports Exerc. 2011;43(4):647–54.
Hagströmer M, Rizzo NS, Sjöström M. Associations of season and region on objectively assessed physical activity and sedentary behaviour. J Sports Sci. 2014;32(7):629–34.
Article
PubMed
Google Scholar
Nilsen AKO, Anderssen SA, Ylvisaaker E, Johannessen K, Aadland E. Physical activity among Norwegian preschoolers varies by sex, age, and season. Scand J Med Sci Sports. 2019;29(6):862–73.
Article
PubMed
Google Scholar
O’Connell SE, Griffiths PL, Clemes SA. Seasonal variation in physical activity, sedentary behaviour and sleep in a sample of UK adults. Ann Hum Biol. 2014;41(1):1–8.
Article
PubMed
Google Scholar
Gracia-Marco L, Ortega FB, Ruiz JR, Williams CA, HagstrÖmer M, Manios Y, et al. Seasonal variation in physical activity and sedentary time in different European regions. The HELENA study. J Sports Sci. 2013;31(16):1831–40.
Article
PubMed
Google Scholar
Diaz KM, Howard VJ, Hutto B, Colabianchi N, Vena JE, Blair SN, et al. Patterns of sedentary behavior in US middle-age and older adults: the REGARDS study. Med Sci Sports Exerc. 2016;48(3):430–8.
Article
PubMed
PubMed Central
Google Scholar
Hunter S, Rosu A, Hesketh KD, Rhodes RE, Rinaldi CM, Rodgers W, et al. Objectively measured environmental correlates of toddlers’ physical activity and sedentary behavior. Pediatr Exerc Sci. 2019;31(4):480–7.
Wong S, Cantoral A, Téllez-Rojo MM, Pantic I, Oken E, Svensson K, et al. Associations between daily ambient temperature and sedentary time among children 4–6 years old in Mexico City. PLoS One [Internet]. 2020 Oct 30 [cited 2020 Dec 3];15(10). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598506/
Dias KI, White J, Jago R, Cardon G, Davey R, Janz KF, et al. International comparison of the levels and potential correlates of objectively measured sedentary time and physical activity among three-to-four-year-old children. Int J Environ Res Public Health. 2019;16:11.
Kharlova I, Deng WH, Mamen J, Mamen A, Fredriksen MV, Fredriksen PM. The weather impact on physical activity of 6–12 year old children: a clustered study of the Health Oriented Pedagogical Project (HOPP). Sports (Basel). 2020;8:1.
Collings PJ, Dogra SA, Costa S, Bingham DD, Barber SE. Objectively-measured sedentary time and physical activity in a bi-ethnic sample of young children: variation by socio-demographic, temporal and perinatal factors. BMC Public Health. 2020 Jan 28;20(1):109.
Article
PubMed
PubMed Central
Google Scholar
King AC, Parkinson KN, Adamson AJ, Murray L, Besson H, Reilly JJ, et al. Correlates of objectively measured physical activity and sedentary behaviour in English children. Eur J Pub Health. 2011 Aug;21(4):424–31.
Article
Google Scholar
Pearce MS, Basterfield L, Mann KD, Parkinson KN, Adamson AJ, Reilly JJ, et al. Early predictors of objectively measured physical activity and sedentary behaviour in 8-10 year old children: the Gateshead millennium study. PLoS One. 2012;7(6):e37975.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchowski MS, Choi L, Majchrzak KM, Acra S, Mathews CE, Chen KY. Seasonal changes in amount and patterns of physical activity in women. J Phys Act Health. 2009;6(2):252–61.
Article
PubMed
PubMed Central
Google Scholar
Sartini C, Morris RW, Whincup PH, Wannamethee SG, Ash S, Lennon L, et al. Association of maximum temperature with sedentary time in older British men. J Phys Act Health. 2017;14(4):265–9.
Remmers T, Thijs C, Timperio A, Salmon J, Veitch J, Kremerr SPJ, et al. Daily weather and children’s physical activity patterns. Med Sci Sports Exerc. 2017;49(5):922–9.
Hoaas H, Zanaboni P, Hjalmarsen A, Morseth B, Dinesen B, Burge AT, et al. Seasonal variations in objectively assessed physical activity among people with COPD in two Nordic countries and Australia: a cross-sectional study. Int J Chron Obstruct Pulmon Dis. 2019;14:1219–28.
Article
PubMed
PubMed Central
Google Scholar
Zheng C, Huang WY, Wong SH-S. Associations of weather conditions with adolescents’ daily physical activity, sedentary time, and sleep duration. Applied Physiology, Nutrition & Metabolism. 2019;44(12):1339–44.
Article
Google Scholar
Cullen KW, Liu Y, Thompson D. Diet and physical activity in african-american girls: seasonal differences. Am J Health Behav. 2017 Mar 1;41(2):171–8.
Article
PubMed
Google Scholar
Bringolf-Isler B, Grize L, Mäder U, Ruch N, Sennhauser FH, Braun-Fahrländer C. Assessment of intensity, prevalence and duration of everyday activities in Swiss school children: a cross-sectional analysis of accelerometer and diary data. Intern J Behav Nutr Phys Act. 2009;6:10.
Newman MA, Pettee KK, Storti KL, Richardson CR, Kuller LH, Kriska AM. Monthly variation in physical activity levels in postmenopausal women. Med Sci Sports Exerc. 2009 Feb;41(2):322–7.
Article
PubMed
Google Scholar
Barkley SA, Herrmann SD. Seasonal variation of physical Activity in community-living vs. residential-dwelling older adults. Californian Journal of Health Promotion. 2017 Dec;15(3):37–47.
Article
Google Scholar
Brychta RJ, Arnardottir NY, Johannsson E, Wright EC, Eiriksdottir G, Gudnason V, et al. Influence of day length and physical activity on sleep patterns in older Icelandic men and women. J Clin Sleep Med. 2016;12(2):203–13.
Article
PubMed
PubMed Central
Google Scholar
Carr LJ, Dunsinger S, Marcus BH. Long-term surveillance of physical activity habits of latinas enrolled in a 12-month physical activity intervention. J Phys Act Health. 2016;13(7):740–6.
Article
PubMed
PubMed Central
Google Scholar
Sumukadas D, Witham M, Struthers A, McMurdo M. Day length and weather conditions profoundly affect physical activity levels in older functionally impaired people. J Epidemiol Community Health. 2009 Apr 1;63(4):305.
Article
CAS
PubMed
Google Scholar
Nakashima D, Kimura D, Watanabe H, Goto F, Kato M, Fujii K, et al. Influence of seasonal variations on physical activity in older people living in mountainous agricultural areas. J Rural Med. 2019 Nov;14(2):165–75.
Article
PubMed
PubMed Central
Google Scholar
Pelclová J, Walid EA, Vašícková J. Study of day, month and season pedometer-determined variability of physical activity of high school pupils in the Czech Republic. J Sports Sci Med. 2010;9(3):490–8.
PubMed
PubMed Central
Google Scholar
Beighle A, Alderman B, Morgan CF, Le Masurier G. Seasonality in children’s pedometer-measured physical activity levels. Res Q Exerc Sport. 2008 Jun;79(2):256–60.
Article
PubMed
Google Scholar
Akande VO, Ruiter RAC, Kremers SPJ. Environmental and motivational determinants of physical activity among Canadian inuit in the arctic. Int J Environ Res Public Health. 2019;09:16(13).
Google Scholar
Clemes SA, Hamilton SL, Griffiths PL. Summer to winter variability in the step counts of normal weight and overweight adults living in the UK. J Phys Act Health. 2011 Jan 1;8(1):36–44.
Article
PubMed
Google Scholar
Cooper AR, Page AS, Wheeler BW, Hillsdon M, Griew P, Jago R. Patterns of GPS measured time outdoors after school and objective physical activity in English children: the PEACH project. Int J Behav Nutr Phys Act. 2010 Dec;7(1):1–9.
Article
Google Scholar
Hamilton SL, Clemes SA, Griffiths PL. UK adults exhibit higher step counts in summer compared to winter months. Ann Hum Biol. 2008 Apr;35(2):154–69.
Article
PubMed
Google Scholar
Kimura T, Kobayashi H, Nakayama E, Kakihana W. Seasonality in physical activity and walking of healthy older adults. J Physiol Anthropol [Internet]. 2015 Oct 2 [cited 2020 Mar 4];34. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591564/
Mitsui T, Barajima T, Kanachi M, Shimaoka K. Daily walking activity among male office workers in a rural town in northern Japan. J Physiol Anthropol. 2010;29(1):43–6.
Article
PubMed
Google Scholar
Sewell L, Singh SJ, Williams JE, Morgan MD. Seasonal variations affect physical activity and pulmonary rehabilitation outcomes. J Cardiopulm Rehabil Prev. 2010 Oct;30(5):329–33.
Article
PubMed
Google Scholar
Hopkins ND, Stratton G, Tinken TM, Ridgers ND, Graves LE, McWhannell N, et al. Seasonal reduction in physical activity and flow-mediated dilation in children. Med Sci Sports Exerc. 2011;43(2):232–8.
Article
PubMed
Google Scholar
Ridgers ND, Salmon J, Timperio A. Seasonal changes in physical activity during school recess and lunchtime among Australian children. J Sports Sci. 2018;36(13):1508–14.
Article
PubMed
Google Scholar
Ridgers ND, Salmon J, Timperio A. Too hot to move? Objectively assessed seasonal changes in Australian children’s physical activity. Int J Behav Nutr Phys Act. 2015 Jun 19;12(1):77.
Article
PubMed
PubMed Central
Google Scholar
Deng WH, Fredriksen PM. Objectively assessed moderate-to-vigorous physical activity levels among primary school children in Norway: The Health Oriented Pedagogical Project (HOPP). Scand J Public Health. 2018;46(21_suppl):38–47.
Article
PubMed
Google Scholar
Bremer E, Graham JD, Bedard C, Rodriguez C, Kriellaars D, Cairney J. The association between PLAYfun and physical activity: a convergent validation study. Res Q Exerc Sport. 2019;16:1–9.
Crowley O, Pugliese L, Kachnowski S. The impact of wearable device enabled health initiatives on physical activity and sleep. Cureus. 2016;8(10):e825.
PubMed
PubMed Central
Google Scholar
Kong S, Park HY, Kang D, Lee JK, Lee G, Kwon OJ, et al. Seasonal variation in physical activity among preoperative patients with lung cancer determined using a wearable device. J Clin Med. 2020;27:9(2).
Google Scholar
McKee DP, Murtagh EM, Boreham CAG, Nevill AM, Murphy MH. Seasonal and annual variation in young children’s physical activity. Med Sci Sports Exerc. 2012;44(7):1318–24.
Article
PubMed
Google Scholar
Jones GR, Brandon C, Gill DP. Physical activity levels of community-dwelling older adults are influenced by winter weather variables. Arch Gerontol Geriatr. 2017;71:28–33.
Article
CAS
PubMed
Google Scholar
de Vries PR, Janssen M, Spaans E, de Groot I, Janssen A, Smeitink J, et al. Natural variability of daily physical activity measured by accelerometry in children with a mitochondrial disease. Mitochondrion. 2019;47:30–7.
Article
PubMed
CAS
Google Scholar
Harrison F, Goodman A, van Sluijs EMF, Andersen LB, Cardon G, Davey R, et al. Weather and children’s physical activity; how and why do relationships vary between countries? Int J Behav Nutr Phys Act. 2017;14(1):74.
Article
PubMed
PubMed Central
Google Scholar
Robbins SM, Jones GR, Birmingham TB, Maly MR. Quantity and quality of physical activity are influenced by outdoor temperature in people with knee osteoarthritis. Physiother Can. 2013;65(3):248–54.
Article
PubMed
PubMed Central
Google Scholar
Balish SM, Dechman G, Hernandez P, Spence JC, Rhodes RE, McGannon K, et al. The relationship between weather and objectively measured physical activity among individuals with COPD. J Cardiopulm Rehabil Prev. 2017;37(6):445–9.
Article
PubMed
Google Scholar
Stabell AC, Wilson M, Jankowski CM, MaWhinney S, Erlandson KM. The impact of a structured, supervised exercise program on daily step count in sedentary older adults with and without HIV. JAIDS. 2020;84(2):228–33.
Prins RG, van Lenthe FJ. The hour-to-hour influence of weather conditions on walking and cycling among Dutch older adults. Age Ageing. 2015;44(5):886–90.
Article
PubMed
Google Scholar
Witham MD, Donnan PT, Vadiveloo T, Sniehotta FF, Crombie IK, Feng Z, et al. Association of day length and weather conditions with physical activity levels in older community dwelling people. PLoS One. 2014;9(1):e85331.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yıldırım M, Schoeni A, Singh AS, Altenburg TM, Brug J, De Bourdeaudhuij I, et al. Daily variations in weather and the relationship with physical activity and sedentary time in European 10- to 12-year-Olds: the ENERGY-project. J Phys Act Health. 2014;11(2):419–25.
Button BLG, Shah TI, Clark AF, Wilk P, Gilliland JA. Examining weather-related factors on physical activity levels of children from rural communities. Can J Public Health. 2020.
Brandon CA, Gill DP, Speechley M, Gilliland J, Jones GR. Physical activity levels of older community-dwelling adults are influenced by summer weather variables. Applied Physiology, Nutrition & Metabolism. 2009;34(2):182–90.
Article
Google Scholar
Badland HM, Christian H, Giles-Corti B, Knuiman M. Seasonality in physical activity: should this be a concern in all settings? Health & Place. 2011;17(5):1084–9.
Article
Google Scholar
Delclòs-Alió X, Marquet O, Vich G, Schipperijn J, Zhang K, Maciejewska M, et al. Temperature and rain moderate the effect of neighborhood walkability on walking time for seniors in Barcelona. Int J Environ Res Public Health. 2019;18:17(1).
Google Scholar
Wang G, Li B, Zhang X, Niu C, Li J, Li L, et al. No seasonal variation in physical activity of Han Chinese living in Beijing. International Journal of Behavioral Nutrition & Physical Activity. 2017;14:1–10.
Article
Google Scholar
Hoppmann CA. Chak man Lee J, Ziegelmann JP, Graf P, khan KM, Ashe MC. Precipitation and physical Activity in older adults: the moderating role of functional mobility and physical activity intentions. J Gerontol Series B: Psychol Sci Soc Sci. 2017;72(5):792–800.
Boutou AK, Raste Y, Demeyer H, Troosters T, Polkey MI, Vogiatzis I, et al. Progression of physical inactivity in COPD patients: the effect of time and climate conditions – a multicenter prospective cohort study. Int J Chron Obstruct Pulmon Dis. 2019 Sep 3;14:1979–92.
Article
PubMed
PubMed Central
Google Scholar
Cradock AL, Melly SJ, Allen JG, Morris JS, Gortmaker SL. Youth destinations associated with objective measures of physical activity in adolescents. J Adolesc Health. 2009 Sep 2;45(3):S91–8.
Article
PubMed
PubMed Central
Google Scholar
Martins RC, Reichert FF, Bielemann RM, Hallal PC. One-year stability of objectively measured physical Activity in young Brazilian adults. J Phys Act Health. 2017;14(3):208–12.
Article
PubMed
Google Scholar
Feinglass J, Lee J, Dunlop D, Song J, Semanik P, Chang RW. The effects of daily weather on accelerometer-measured physical activity among adults with arthritis. J Phys Act Health. 2011;8(7):934–43.
Article
PubMed
PubMed Central
Google Scholar
Jehn M, Gebhardt A, Liebers U, Kiran B, Scherer D, Endlicher W, et al. Heat stress is associated with reduced health status in pulmonary arterial hypertension: a prospective study cohort. Lung. 2014;192(4):619–24.
Article
CAS
PubMed
Google Scholar
Al-Mohannadi AS, Farooq A, Burnett A, Van Der Walt M, Al-Kuwari MG. Impact of climatic conditions on physical Activity: a 2-year cohort study in the Arabian gulf region. J Phys Act Health. 2016;13(9):929–37.
Article
PubMed
Google Scholar
Mitchell DC, Armitage TL, Bennett DH, Schenker MB, Castro J, Tancredi DJ. Physical activity and common tasks of California farm workers: California heat illness prevention study (CHIPS). J Occupational & Environmental Hygiene. 2018;15(12):857–69.
Article
Google Scholar
Bejarano CM, Cushing CC, Crick CJ. Does context predict psychological states and activity? An ecological momentary assessment pilot study of adolescents. Psychology of Sport & Exercise. 2019 Mar;41:146–52.
Article
Google Scholar
Colom A, Ruiz M, Wärnberg J, Compa M, Muncunill J, Barón-López FJ, et al. Mediterranean built environment and precipitation as modulator factors on physical activity in obese mid-sge and old-age adults with metabolic syndrome: cross-sectional study. Int J Environ Res Public Health. 2019;16(5):854.
Article
PubMed Central
Google Scholar
Dill J, McNeil N, Broach J, Ma L. Bicycle boulevards and changes in physical activity and active transportation: findings from a natural experiment. Prev Med. 2014;69(Suppl 1):S74–8.
Article
PubMed
Google Scholar
Sugino A, Minakata Y, Kanda M, Akamatsu K, Koarai A, Hirano T, et al. Validation of a compact motion sensor for the measurement of physical activity in patients with chronic obstructive pulmonary disease. Respiration. 2012;83(4):300–7.
Article
PubMed
Google Scholar
Oliver M, Schluter PJ, Schofield GM, Paterson J. Factors related to accelerometer-derived physical activity in Pacific children aged 6 years. Asia Pac J Public Health. 2011 Jan;23(1):44–56.
Article
PubMed
Google Scholar
Goodman A, Page AS, Cooper AR. International Children’s Accelerometry Database (ICAD) Collaborators. Daylight saving time as a potential public health intervention: an observational study of evening daylight and objectively-measured physical activity among 23,000 children from 9 countries. Int J Behav Nutr Phys Act. 2014;11:84.
Article
PubMed
PubMed Central
Google Scholar
Goodman A, Paskins J, Mackett R. Day length and weather effects on children’s physical Activity and participation in play, sports, and active travel. J Phys Act Health. 2012;9(8):1105–16.
Griew P, Page A, Thomas S, Hillsdon M, Cooper AR. The school effect on children’s school time physical activity: the PEACH project. Prev Med. 2010;51(3–4):282–6.
Article
PubMed
Google Scholar
McMurdo MET, Argo I, Crombie IK, Feng Z, Sniehotta FF, Vadiveloo T, et al. Social, environmental and psychological factors associated with objective physical activity levels in the over 65s. PLoS One. 2012;7(2):e31878.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenthal DG, Vittinghoff E, Tison GH, Pletcher MJ, Olgin JE, Grandis DJ, et al. Assessment of accelerometer-based physical activity during the 2017-2018 California wildfire seasons. JAMA Netw Open. 2020;3(10):e2018116–6.
Institute of Medicine (US). Human health and the natural environment [Internet]. Rebuilding the Unity of Health and the Environment: A New Vision of Environmental Health for the 21st Century. National Academies Press (US); 2001. Available from: http://www.ncbi.nlm.nih.gov/books/NBK99584/.
Taylor SE, Repetti RL, Seeman T. Health psychology: what is an unhealthy environment and how does it get under the skin? Annu Rev Psychol. 1997;48:411–47.
Article
CAS
PubMed
Google Scholar
Barreto P. de S. Why are we failing to promote physical activity globally? Bull World Health Organ. 2013;91(6):390–390A.
Whitfield G, Carlson S, Ussery E, Fulton J, Galuska D, Petersen R. Trends in meeting physical activity guidelines among urban and rural dwelling adults — United States, 2008–2017. MMWR Morb Mortal Wkly Rep. 2019;68:513–8.
Article
PubMed
PubMed Central
Google Scholar
Martin KR, Koster A, Murphy RA, Van Domelen DR, Hung M, Brychta RJ, et al. Changes in daily activity patterns with age in U.S. men and women: National Health and nutrition examination survey (NHANES) 2003–04 and 2005–06. J Am Geriatr Soc. 2014 Jul 1;62(7):1263–71.
Article
PubMed
PubMed Central
Google Scholar
Amagasa S, Machida M, Fukushima N, Kikuchi H, Takamiya T, Odagiri Y, et al. Is objectively measured light-intensity physical activity associated with health outcomes after adjustment for moderate-to-vigorous physical activity in adults? A systematic review. Int J Behav Nutr Phys Act. 2018 Dec;15(1):1–13.
Article
Google Scholar
Conroy DE, Lagoa CM, Hekler E, Rivera DE. Engineering person-specific behavioral interventions to promote physical Activity. Exerc Sport Sci Rev. 2020;48(4):170–9.
Article
PubMed
PubMed Central
Google Scholar
Xu C, Kohler TA, Lenton TM, Svenning J-C, Scheffer M. Future of the human climate niche. Proc Natl Acad Sci U S A. 2020 May;4:201910114.
Google Scholar
World Health Organization, editor. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva, Switzerland: World Health Organization; 2009. 62 p.
Population estimates and projections [Internet]. DataBank. 2020 [cited 2020 Jun 5]. Available from: https://databank.worldbank.org/source/population-estimates-and-projections
Molenaar PCM. On the necessity to use person-specific data analysis approaches in psychology. Eur J Dev Psychol. 2013 Jan 1;10(1):29–39.
Article
Google Scholar
Oxford English Dictionary (OED) [Internet]. Vol. 2. Oxford, England: Oxford University Press (OUP); 1989. 21,728. Available from: https://www.oed.com/
National Weather Service. National Weather Service Glossary [Internet]. National Oceanic and Atmospheric Administration’s National Weather Service. 2009 [cited 2020 Jun 5]. Available from: https://w1.weather.gov/glossary/